IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v9y2015i3p341-365.html
   My bibliography  Save this article

A diffusion model for churn prediction based on sociometric theory

Author

Listed:
  • Uroš Droftina
  • Mitja Å tular
  • Andrej Košir

Abstract

Churn prediction has received much attention in the last decade. With the evolution of social networks and social network analysis tools in recent years, the consideration of social ties in churn prediction has proven promising. One possibility is to use energy diffusion models to model the spread of influence through a social network. This paper proposes a novel churn prediction diffusion model based on sociometric clique and social status theory. It describes the concept of energy in the diffusion model as an opinion of users, which is transformed to user influence using the derived social status function. Furthermore, a novel diffusion model prediction scheme applicable to a single user or a small subset of users is described: the Targeted User Subset Churn Prediction Scheme. The scheme allows fast churn prediction using limited computing resources. The diffusion model is evaluated on a real dataset of users obtained from the largest Slovenian mobile service provider, using the F-measure and lift curve. The empirical results show a significant improvement in prediction accuracy of the proposed method compared with the basic spreading activation technique (SPA) diffusion model. More specifically, our approach outperforms a basic SPA diffusion model by 116 % in terms of lift in the fifth percentile. Copyright The Author(s) 2015

Suggested Citation

  • Uroš Droftina & Mitja Å tular & Andrej Košir, 2015. "A diffusion model for churn prediction based on sociometric theory," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 341-365, September.
  • Handle: RePEc:spr:advdac:v:9:y:2015:i:3:p:341-365
    DOI: 10.1007/s11634-014-0188-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-014-0188-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-014-0188-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012. "Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
    2. Robert Mokken, 1979. "Cliques, clubs and clans," Quality & Quantity: International Journal of Methodology, Springer, vol. 13(2), pages 161-173, April.
    3. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    4. R. Luce & Albert Perry, 1949. "A method of matrix analysis of group structure," Psychometrika, Springer;The Psychometric Society, vol. 14(2), pages 95-116, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Angel de la Llave Montiel & Fernando López, 2020. "Spatial models for online retail churn: Evidence from an online grocery delivery service in Madrid," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1643-1665, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    2. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    3. Vladimir Boginski & Sergiy Butenko & Oleg Shirokikh & Svyatoslav Trukhanov & Jaime Gil Lafuente, 2014. "A network-based data mining approach to portfolio selection via weighted clique relaxations," Annals of Operations Research, Springer, vol. 216(1), pages 23-34, May.
    4. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    5. Yuichi Asahiro & Tomohiro Kubo & Eiji Miyano, 2019. "Experimental Evaluation of Approximation and Heuristic Algorithms for Maximum Distance-Bounded Subgraph Problems," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 143-161, October.
    6. Zhuqi Miao & Balabhaskar Balasundaram, 2020. "An Ellipsoidal Bounding Scheme for the Quasi-Clique Number of a Graph," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 763-778, July.
    7. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    8. Balabhaskar Balasundaram & Sergiy Butenko & Svyatoslav Trukhanov, 2005. "Novel Approaches for Analyzing Biological Networks," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 23-39, August.
    9. Miguel Angel de la Llave Montiel & Fernando López, 2020. "Spatial models for online retail churn: Evidence from an online grocery delivery service in Madrid," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1643-1665, December.
    10. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    11. Alexei A. Gaivoronski & Per Jonny Nesse & Olai Bendik Erdal, 2017. "Internet service provision and content services: paid peering and competition between internet providers," Netnomics, Springer, vol. 18(1), pages 43-79, May.
    12. Simone Celant, 2013. "Two-mode networks: the measurement of efficiency in the profiles of actors’ participation in the occasions," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3289-3302, October.
    13. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    14. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    15. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    16. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    17. Zhu, Yongjun & Yan, Erjia, 2017. "Examining academic ranking and inequality in library and information science through faculty hiring networks," Journal of Informetrics, Elsevier, vol. 11(2), pages 641-654.
    18. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    19. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    20. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:9:y:2015:i:3:p:341-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.