IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v8y2014i1p85-103.html
   My bibliography  Save this article

Mixtures of biased sentiment analysers

Author

Listed:
  • Michael Salter-Townshend
  • Thomas Murphy

Abstract

Modelling bias is an important consideration when dealing with inexpert annotations. We are concerned with training a classifier to perform sentiment analysis on news media articles, some of which have been manually annotated by volunteers. The classifier is trained on the words in the articles and then applied to non-annotated articles. In previous work we found that a joint estimation of the annotator biases and the classifier parameters performed better than estimation of the biases followed by training of the classifier. An important question follows from this result: can the annotators be usefully clustered into either predetermined or data-driven clusters, based on their biases? If so, such a clustering could be used to select, drop or otherwise categorise the annotators in a crowdsourcing task. This paper presents work on fitting a finite mixture model to the annotators’ bias. We develop a model and an algorithm and demonstrate its properties on simulated data. We then demonstrate the clustering that exists in our motivating dataset, namely the analysis of potentially economically relevant news articles from Irish online news sources. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Michael Salter-Townshend & Thomas Murphy, 2014. "Mixtures of biased sentiment analysers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 85-103, March.
  • Handle: RePEc:spr:advdac:v:8:y:2014:i:1:p:85-103
    DOI: 10.1007/s11634-013-0150-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-013-0150-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-013-0150-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    2. Hathaway, Richard J., 1986. "Another interpretation of the EM algorithm for mixture distributions," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 53-56, March.
    3. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Calissano & Simone Vantini & Marika Arena, 2020. "Monitoring rare categories in sentiment and opinion analysis: a Milan mega event on Twitter platform," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 787-812, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    2. Bhatia, Parmeet Singh & Iovleff, Serge & Govaert, Gérard, 2017. "blockcluster: An R Package for Model-Based Co-Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i09).
    3. Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
    4. Bergé, Laurent R. & Bouveyron, Charles & Corneli, Marco & Latouche, Pierre, 2019. "The latent topic block model for the co-clustering of textual interaction data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 247-270.
    5. Hunt, Lynette A. & Basford, Kaye E., 2016. "Comparing classical criteria for selecting intra-class correlated features in Multimix," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 350-366.
    6. Paul Koster & Hans Koster, 2013. "Commuters' Preferences for Fast and Reliable Travel," Tinbergen Institute Discussion Papers 13-075/VIII, Tinbergen Institute, revised 30 Apr 2015.
    7. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
    8. Koster, Paul R. & Koster, Hans R.A., 2015. "Commuters’ preferences for fast and reliable travel: A semi-parametric estimation approach," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 289-301.
    9. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    10. Julian Aichholzer & Sylvia Kritzinger & Carolina Plescia, 2021. "National identity profiles and support for the European Union," European Union Politics, , vol. 22(2), pages 293-315, June.
    11. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    12. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    13. Jacky C. K. Ng & Joanne Y. H. Chong & Hilary K. Y. Ng, 2023. "The way I see the world, the way I envy others: a person-centered investigation of worldviews and the malicious and benign forms of envy among adolescents and adults," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    14. Gillian C. Williams & Karen A. Patte & Mark A. Ferro & Scott T. Leatherdale, 2021. "Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    15. Mélissa Lemoine & Gerhard Gmel & Simon Foster & Simon Marmet & Joseph Studer, 2020. "Multiple trajectories of alcohol use and the development of alcohol use disorder: Do Swiss men mature-out of problematic alcohol use during emerging adulthood?," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    16. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    17. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    18. Andrew Clark & Fabien Postel-Vinay, 2009. "Job security and job protection," Oxford Economic Papers, Oxford University Press, vol. 61(2), pages 207-239, April.
    19. Ellen Bouchery & Monica Farid, "undated". "Variation in Staff Salary Costs Associated with Characteristics of Substance Use Disorder Treatment Facilities," Mathematica Policy Research Reports 65b1484724354c0ca8270d1c6, Mathematica Policy Research.
    20. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:8:y:2014:i:1:p:85-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.