IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v137y2019icp247-270.html
   My bibliography  Save this article

The latent topic block model for the co-clustering of textual interaction data

Author

Listed:
  • Bergé, Laurent R.
  • Bouveyron, Charles
  • Corneli, Marco
  • Latouche, Pierre

Abstract

Textual interaction data involving two disjoint sets of individuals/objects are considered. An example of such data is given by the reviews on web platforms (e.g. Amazon, TripAdvisor, etc.) where buyers comment on products/services they bought. A new generative model, the latent topic block model (LTBM), is developed along with an inference algorithm to simultaneously partition the elements of each set, accounting for the textual information. The estimation of the model parameters is performed via a variational version of the expectation maximization (EM) algorithm. A model selection criterion is formally obtained to estimate the number of partitions. Numerical experiments on simulated data are carried out to highlight the main features of the estimation procedure. Two real-world datasets are finally employed to show the usefulness of the proposed approach.

Suggested Citation

  • Bergé, Laurent R. & Bouveyron, Charles & Corneli, Marco & Latouche, Pierre, 2019. "The latent topic block model for the co-clustering of textual interaction data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 247-270.
  • Handle: RePEc:eee:csdana:v:137:y:2019:i:c:p:247-270
    DOI: 10.1016/j.csda.2019.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319300726
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wyse, Jason & Friel, Nial & Latouche, Pierre, 2017. "Inferring structure in bipartite networks using the latent blockmodel and exact ICL," Network Science, Cambridge University Press, vol. 5(1), pages 45-69, March.
    2. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    3. Hathaway, Richard J., 1986. "Another interpretation of the EM algorithm for mixture distributions," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 53-56, March.
    4. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    5. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Jouvin & Pierre Latouche & Charles Bouveyron & Guillaume Bataillon & Alain Livartowski, 2021. "Greedy clustering of count data through a mixture of multinomial PCA," Computational Statistics, Springer, vol. 36(1), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.
    2. Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
    3. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    4. Bhatia, Parmeet Singh & Iovleff, Serge & Govaert, Gérard, 2017. "blockcluster: An R Package for Model-Based Co-Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i09).
    5. Di Zio, Marco & Guarnera, Ugo & Rocci, Roberto, 2007. "A mixture of mixture models for a classification problem: The unity measure error," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2573-2585, February.
    6. Michael Salter-Townshend & Thomas Murphy, 2014. "Mixtures of biased sentiment analysers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 85-103, March.
    7. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    8. Allassonnière, Stéphanie & Chevallier, Juliette, 2021. "A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    9. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    10. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    11. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    12. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    13. Mingxi Zhang & Pohan Li & Wei Wang, 2017. "An index-based algorithm for fast on-line query processing of latent semantic analysis," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    14. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    15. Maria Iannario, 2012. "Preliminary estimators for a mixture model of ordinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 163-184, October.
    16. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    17. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    18. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    19. Amanda F. Mejia, 2022. "Discussion on “distributional independent component analysis for diverse neuroimaging modalities” by Ben Wu, Subhadip Pal, Jian Kang, and Ying Guo," Biometrics, The International Biometric Society, vol. 78(3), pages 1109-1112, September.
    20. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:137:y:2019:i:c:p:247-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.