IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i4d10.1007_s11634-023-00565-3.html
   My bibliography  Save this article

Applications of dual regularized Laplacian matrix for community detection

Author

Listed:
  • Huan Qing

    (Chongqing University of Technology)

  • Jingli Wang

    (Nankai University)

Abstract

Spectral clustering is widely used for detecting clusters in networks for community detection, while a small change on the graph Laplacian matrix could bring a dramatic improvement. In this paper, we propose a dual regularized graph Laplacian matrix and then employ it to the classical spectral clustering approach under the degree-corrected stochastic block model. If the number of communities is known as K, we consider more than K leading eigenvectors and weight them by their corresponding eigenvalues in the spectral clustering procedure to improve the performance. The improved spectral clustering method is dual regularized spectral clustering (DRSC). Theoretical analysis of DRSC shows that under mild conditions it yields stable consistent community detection. Meanwhile, we develop a strategy by taking advantage of DRSC and Newman’s modularity to estimate the number of communities K. We compare the performance of DRSC with several spectral methods and investigate the behaviors of our strategy for estimating K by substantial simulated networks and real-world networks. Numerical results show that DRSC enjoys satisfactory performance and our strategy on estimating K performs accurately and consistently, even in cases where there is only one community in a network.

Suggested Citation

  • Huan Qing & Jingli Wang, 2024. "Applications of dual regularized Laplacian matrix for community detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1001-1043, December.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00565-3
    DOI: 10.1007/s11634-023-00565-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-023-00565-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-023-00565-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:4:d:10.1007_s11634-023-00565-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.