IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i2p257-276..html
   My bibliography  Save this article

Network cross-validation by edge sampling

Author

Listed:
  • Tianxi Li
  • Elizaveta Levina
  • Ji Zhu

Abstract

Summary While many statistical models and methods are now available for network analysis, resampling of network data remains a challenging problem. Cross-validation is a useful general tool for model selection and parameter tuning, but it is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. In this paper we propose a new network resampling strategy, based on splitting node pairs rather than nodes, that is applicable to cross-validation for a wide range of network model selection tasks. We provide theoretical justification for our method in a general setting and examples of how the method can be used in specific network model selection and parameter tuning tasks. Numerical results on simulated networks and on a statisticians’ citation network show that the proposed cross-validation approach works well for model selection.

Suggested Citation

  • Tianxi Li & Elizaveta Levina & Ji Zhu, 2020. "Network cross-validation by edge sampling," Biometrika, Biometrika Trust, vol. 107(2), pages 257-276.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:257-276.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa006
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Yi & Li, Yingying & Liu, Guoli & Zheng, Xinghua, 2024. "Stock co-jump networks," Journal of Econometrics, Elsevier, vol. 239(2).
    2. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    4. Guo, Xiao & Zhang, Hai & Chang, Xiangyu, 2024. "On the efficacy of higher-order spectral clustering under weighted stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    5. Jesús Arroyo & Elizaveta Levina, 2022. "Overlapping Community Detection in Networks via Sparse Spectral Decomposition," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-35, June.
    6. Yong Cai, 2022. "Linear Regression with Centrality Measures," Papers 2210.10024, arXiv.org.
    7. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    8. Li Guo & Wolfgang Karl Härdle & Yubo Tao, 2024. "A Time-Varying Network for Cryptocurrencies," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 437-456, April.
    9. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    10. Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:257-276.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.