IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i16p4165-4180.html
   My bibliography  Save this article

Social structure of Facebook networks

Author

Listed:
  • Traud, Amanda L.
  • Mucha, Peter J.
  • Porter, Mason A.

Abstract

We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes–gender, class year, major, high school, and residence–at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

Suggested Citation

  • Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:16:p:4165-4180
    DOI: 10.1016/j.physa.2011.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111009186
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cranmer, Skyler J. & Desmarais, Bruce A., 2011. "Inferential Network Analysis with Exponential Random Graph Models," Political Analysis, Cambridge University Press, vol. 19(1), pages 66-86, January.
    2. Zhang, Yan & Friend, A.J. & Traud, Amanda L. & Porter, Mason A. & Fowler, James H. & Mucha, Peter J., 2008. "Community structure in Congressional cosponsorship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1705-1712.
    3. Hunter, David R. & Handcock, Mark S. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i03).
    4. González, M.C. & Herrmann, H.J. & Kertész, J. & Vicsek, T., 2007. "Community structure and ethnic preferences in school friendship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 307-316.
    5. Mayer, Adalbert & Puller, Steven L., 2008. "The old boy (and girl) network: Social network formation on university campuses," Journal of Public Economics, Elsevier, vol. 92(1-2), pages 329-347, February.
    6. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darko Cherepnalkoski & Andreas Karpf & Igor Mozetič & Miha Grčar, 2016. "Cohesion and Coalition Formation in the European Parliament: Roll-Call Votes and Twitter Activities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-27, November.
    2. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Javier Sánchez García & Salvador Cruz Rambaud, 2024. "The network econometrics of financial concentration," Review of Managerial Science, Springer, vol. 18(7), pages 2007-2045, July.
    4. Bruce A Desmarais & Skyler J Cranmer, 2012. "Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-12, January.
    5. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Ji Youn (Rose) Kim & Michael Howard & Emily Cox Pahnke & Warren Boeker, 2016. "Understanding network formation in strategy research: Exponential random graph models," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 22-44, January.
    6. Desmarais, B.A. & Cranmer, S.J., 2012. "Statistical mechanics of networks: Estimation and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1865-1876.
    7. Neal, Zachary & Domagalski, Rachel & Yan, Xiaoqin, 2020. "Party Control as a Context for Homophily in Collaborations among US House Representatives, 1981 -- 2015," OSF Preprints qwdxs, Center for Open Science.
    8. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    9. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    10. Gauer, Florian & Landwehr, Jakob, 2014. "Continuous homophily and clustering in random networks," Center for Mathematical Economics Working Papers 515, Center for Mathematical Economics, Bielefeld University.
    11. Pavel N. Krivitsky & Laura M. Koehly & Christopher Steven Marcum, 2020. "Exponential-Family Random Graph Models for Multi-Layer Networks," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 630-659, September.
    12. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
    13. Steven Goodreau & James Kitts & Martina Morris, 2009. "Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks," Demography, Springer;Population Association of America (PAA), vol. 46(1), pages 103-125, February.
    14. Ekaterina Krekhovets & Oleg Poldin, 2013. "Students' Social Media: Formation Factors and Influence on Studies," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 4, pages 127-144.
    15. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    16. Bouranis, Lampros & Friel, Nial & Maire, Florian, 2018. "Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 221-241.
    17. Gallemore, Caleb & Di Gregorio, Monica & Moeliono, Moira & Brockhaus, Maria & Prasti H., Rut Dini, 2015. "Transaction costs, power, and multi-level forest governance in Indonesia," Ecological Economics, Elsevier, vol. 114(C), pages 168-179.
    18. Emily V. Bell, 2024. "Climate risk perceptions, change in water demand, and preferences for future interlocal collaboration," Climatic Change, Springer, vol. 177(7), pages 1-21, July.
    19. Angelo Mele, 2010. "A Structural Model of Segregation in Social Networks," Working Papers 10-16, NET Institute.
    20. Cody J. Dey & James S. Quinn, 2014. "Individual attributes and self-organizational processes affect dominance network structure in pukeko," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(6), pages 1402-1408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:16:p:4165-4180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.