IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i2p469-485.html
   My bibliography  Save this article

Co-citation and Co-authorship Networks of Statisticians

Author

Listed:
  • Pengsheng Ji
  • Jiashun Jin
  • Zheng Tracy Ke
  • Wanshan Li

Abstract

We collected and cleaned a large dataset on publications in statistics. The dataset consists of the co-author relationships and citation relationships of 83, 331 articles published in 36 representative journals in statistics, probability, and machine learning, spanning 41 years. The dataset allows us to construct many different networks, and motivates a number of research problems about the research patterns and trends, research impacts, and network topology of the statistics community. In this article we focus on (i) using the citation relationships to estimate the research interests of authors, and (ii) using the co-author relationships to study the network topology. Using co-citation networks we constructed, we discover a “statistics triangle,” reminiscent of the statistical philosophy triangle (Efron 1998). We propose new approaches to constructing the “research map” of statisticians, as well as the “research trajectory” for a given author to visualize his/her research interest evolvement. Using co-authorship networks we constructed, we discover a multi-layer community tree and produce a Sankey diagram to visualize the author migrations in different sub-areas. We also propose several new metrics for research diversity of individual authors. We find that “Bayes,” “Biostatistics,” and “Nonparametric” are three primary areas in statistics. We also identify 15 sub-areas, each of which can be viewed as a weighted average of the primary areas, and identify several underlying reasons for the formation of co-authorship communities. We also find that the research interests of statisticians have evolved significantly in the 41-year time window we studied: some areas (e.g., biostatistics, high-dimensional data analysis, etc.) have become increasingly more popular. The research diversity of statisticians may be lower than we might have expected. For example, for the personalized networks of most authors, the p-values of the proposed significance tests are relatively large.

Suggested Citation

  • Pengsheng Ji & Jiashun Jin & Zheng Tracy Ke & Wanshan Li, 2022. "Co-citation and Co-authorship Networks of Statisticians," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 469-485, April.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:469-485
    DOI: 10.1080/07350015.2021.1978469
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.1978469
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.1978469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastian Schäfermeier & Johannes Hirth & Tom Hanika, 2023. "Research topic flows in co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5051-5078, September.
    2. Gómez-Déniz, Emilio & Dorta-González, Pablo, 2024. "Modeling citation concentration through a mixture of Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 18(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:469-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.