Network Cross-Validation for Determining the Number of Communities in Network Data
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2016.1246365
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lu, Hong & Sang, Xiaoshuang & Zhao, Qinghua & Lu, Jianfeng, 2020. "Community detection algorithm based on nonnegative matrix factorization and pairwise constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Jianqing Fan & Yingying Fan & Xiao Han & Jinchi Lv, 2022. "SIMPLE: Statistical inference on membership profiles in large networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 630-653, April.
- Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Momin M. Malik, 2020. "A Hierarchy of Limitations in Machine Learning," Papers 2002.05193, arXiv.org, revised Feb 2020.
- Can M. Le & Tianxi Li, 2022. "Linear regression and its inference on noisy network‐linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1851-1885, November.
- Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
- Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
- Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
- Tidarat Luangrungruang & Urachart Kokaew, 2022. "Adapting Fleming-Type Learning Style Classifications to Deaf Student Behavior," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
- Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:241-251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.