IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i521p241-251.html
   My bibliography  Save this article

Network Cross-Validation for Determining the Number of Communities in Network Data

Author

Listed:
  • Kehui Chen
  • Jing Lei

Abstract

The stochastic block model (SBM) and its variants have been a popular tool for analyzing large network data with community structures. In this article, we develop an efficient network cross-validation (NCV) approach to determine the number of communities, as well as to choose between the regular stochastic block model and the degree corrected block model (DCBM). The proposed NCV method is based on a block-wise node-pair splitting technique, combined with an integrated step of community recovery using sub-blocks of the adjacency matrix. We prove that the probability of under-selection vanishes as the number of nodes increases, under mild conditions satisfied by a wide range of popular community recovery algorithms. The solid performance of our method is also demonstrated in extensive simulations and two data examples. Supplementary materials for this article are available online.

Suggested Citation

  • Kehui Chen & Jing Lei, 2018. "Network Cross-Validation for Determining the Number of Communities in Network Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 241-251, January.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:241-251
    DOI: 10.1080/01621459.2016.1246365
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1246365
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1246365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Hong & Sang, Xiaoshuang & Zhao, Qinghua & Lu, Jianfeng, 2020. "Community detection algorithm based on nonnegative matrix factorization and pairwise constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Jianqing Fan & Yingying Fan & Xiao Han & Jinchi Lv, 2022. "SIMPLE: Statistical inference on membership profiles in large networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 630-653, April.
    3. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    4. Momin M. Malik, 2020. "A Hierarchy of Limitations in Machine Learning," Papers 2002.05193, arXiv.org, revised Feb 2020.
    5. Can M. Le & Tianxi Li, 2022. "Linear regression and its inference on noisy network‐linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1851-1885, November.
    6. Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
    7. Thorben Funke & Till Becker, 2019. "Stochastic block models: A comparison of variants and inference methods," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-40, April.
    8. Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    9. Tidarat Luangrungruang & Urachart Kokaew, 2022. "Adapting Fleming-Type Learning Style Classifications to Deaf Student Behavior," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    10. Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:241-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.