IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v22y2007i3p391-410.html
   My bibliography  Save this article

Functional k-sample problem when data are density functions

Author

Listed:
  • Pedro Delicado

Abstract

No abstract is available for this item.

Suggested Citation

  • Pedro Delicado, 2007. "Functional k-sample problem when data are density functions," Computational Statistics, Springer, vol. 22(3), pages 391-410, September.
  • Handle: RePEc:spr:compst:v:22:y:2007:i:3:p:391-410
    DOI: 10.1007/s00180-007-0047-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-007-0047-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-007-0047-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eva Boj & Aurea Grané & Josep Fortiana & M. Claramunt, 2007. "Implementing PLS for distance-based regression: computational issues," Computational Statistics, Springer, vol. 22(2), pages 237-248, July.
    2. Levy, Horacio & Mercader-Prats, Magda, 2004. "The role of tax and transfers in reducing personal income inequality in Europe’s regions: evidence form EUROMOD," EUROMOD Working Papers EM9/04, EUROMOD at the Institute for Social and Economic Research.
    3. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    4. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez-Camblor, Pablo, 2010. "Nonparametric k-sample test based on kernel density estimator for paired design," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2035-2045, August.
    2. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
    3. Bongiorno, Enea G. & Goia, Aldo, 2019. "Describing the concentration of income populations by functional principal component analysis on Lorenz curves," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 10-24.
    4. repec:cte:wsrepe:ws133228 is not listed on IDEAS
    5. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    6. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    7. Vsevolozhskaya, O.A. & Greenwood, M.C. & Bellante, G.J. & Powell, S.L. & Lawrence, R.L. & Repasky, K.S., 2013. "Combining functions and the closure principle for performing follow-up tests in functional analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 175-184.
    8. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    9. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    10. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.
    11. Anthony Hayter, 2014. "Identifying common normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 135-152, March.
    12. Matthias Studer & Gilbert Ritschard & Alexis Gabadinho & Nicolas S. Müller, 2011. "Discrepancy Analysis of State Sequences," Sociological Methods & Research, , vol. 40(3), pages 471-510, August.
    13. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    14. Menafoglio, Alessandra & Petris, Giovanni, 2016. "Kriging for Hilbert-space valued random fields: The operatorial point of view," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 84-94.
    15. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    16. Huaihou Chen & Philip T. Reiss & Thaddeus Tarpey, 2014. "Optimally weighted L-super-2 distance for functional data," Biometrics, The International Biometric Society, vol. 70(3), pages 516-525, September.
    17. Łukasz Smaga & Jin‐Ting Zhang, 2020. "Linear hypothesis testing for weighted functional data with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 493-515, June.
    18. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hlubinka, Daniel & Prchal, Lubos, 2007. "Changes in atmospheric radiation from the statistical point of view," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4926-4941, June.
    2. Łukasz Smaga & Jin‐Ting Zhang, 2020. "Linear hypothesis testing for weighted functional data with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 493-515, June.
    3. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    4. Kim Huynh & David Jacho-Chávez & Robert Petrunia & Marcel Voia, 2015. "A nonparametric analysis of firm size, leverage and labour productivity distribution dynamics," Empirical Economics, Springer, vol. 48(1), pages 337-360, February.
    5. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    6. repec:hum:wpaper:sfb649dp2006-010 is not listed on IDEAS
    7. Gustavo Canavire-Bacarreza & Luis C. Carvajal-Osorio, 2020. "Two Stories of Wage Dynamics in Latin America: Different Policies, Different Outcomes," Journal of Labor Research, Springer, vol. 41(1), pages 128-168, June.
    8. repec:cte:wsrepe:ws1503 is not listed on IDEAS
    9. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    10. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    11. repec:hum:wpaper:sfb649dp2005-016 is not listed on IDEAS
    12. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    13. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    14. repec:hum:wpaper:sfb649dp2017-024 is not listed on IDEAS
    15. Lajos Horváth & Gregory Rice, 2015. "Testing Equality Of Means When The Observations Are From Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 84-108, January.
    16. Joachim Frick & Jan Goebel, 2008. "Regional Income Stratification in Unified Germany Using a Gini Decomposition Approach," Regional Studies, Taylor & Francis Journals, vol. 42(4), pages 555-577.
    17. Ji Yeh Choi & Heungsun Hwang & Michio Yamamoto & Kwanghee Jung & Todd S. Woodward, 2017. "A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 427-441, June.
    18. Andrii Babii & Eric Ghysels & Junsu Pan, 2022. "Tensor Principal Component Analysis," Papers 2212.12981, arXiv.org, revised Aug 2023.
    19. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    20. Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    22. Detlefsen, Kai & Härdle, Wolfgang Karl, 2005. "Common functional implied volatility analysis," SFB 649 Discussion Papers 2005-012, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    23. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    24. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    25. Meeks, Roland & Monti, Francesca, 2023. "Heterogeneous beliefs and the Phillips curve," Journal of Monetary Economics, Elsevier, vol. 139(C), pages 41-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:22:y:2007:i:3:p:391-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.