IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i4d10.1007_s11634-018-0345-y.html
   My bibliography  Save this article

A classification tree approach for the modeling of competing risks in discrete time

Author

Listed:
  • Moritz Berger

    (University Hospital Bonn)

  • Thomas Welchowski

    (University Hospital Bonn)

  • Steffen Schmitz-Valckenberg

    (University Eye Hospital Bonn)

  • Matthias Schmid

    (University Hospital Bonn)

Abstract

Cause-specific hazard models are a popular tool for the analysis of competing risks data. The classical modeling approach in discrete time consists of fitting parametric multinomial logit models. A drawback of this method is that the focus is on main effects only, and that higher order interactions are hard to handle. Moreover, the resulting models contain a large number of parameters, which may cause numerical problems when estimating coefficients. To overcome these problems, a tree-based model is proposed that extends the survival tree methodology developed previously for time-to-event models with one single type of event. The performance of the method, compared with several competitors, is investigated in simulations. The usefulness of the proposed approach is demonstrated by an analysis of age-related macular degeneration among elderly people that were monitored by annual study visits.

Suggested Citation

  • Moritz Berger & Thomas Welchowski & Steffen Schmitz-Valckenberg & Matthias Schmid, 2019. "A classification tree approach for the modeling of competing risks in discrete time," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 965-990, December.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-018-0345-y
    DOI: 10.1007/s11634-018-0345-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-018-0345-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-018-0345-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    3. L. Doove & E. Dusseldorp & K. Deun & I. Mechelen, 2014. "A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment–subgroup interactions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 403-425, December.
    4. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    5. Catalina A. Vallejos & Mark F. J. Steel, 2017. "Bayesian survival modelling of university outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 613-631, February.
    6. Yee, Thomas W., 2010. "The VGAM Package for Categorical Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i10).
    7. Gerhard Tutz, 1995. "Competing risks models in discrete time with nominal or ordinal categories of response," Quality & Quantity: International Journal of Methodology, Springer, vol. 29(4), pages 405-420, November.
    8. Luo, Sirong & Kong, Xiao & Nie, Tingting, 2016. "Spline based survival model for credit risk modeling," European Journal of Operational Research, Elsevier, vol. 253(3), pages 869-879.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    2. Jiang, Xianfeng & Packer, Frank, 2019. "Credit ratings of Chinese firms by domestic and global agencies: Assessing the determinants and impact," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 178-193.
    3. Yiwei Fan & Jiaqi Gu & Guosheng Yin, 2023. "Sparse concordance‐based ordinal classification," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 934-961, September.
    4. Aina, Carmen & Baici, Eliana & Casalone, Giorgia & Pastore, Francesco, 2018. "The Economics of University Dropouts and Delayed Graduation: A Survey," IZA Discussion Papers 11421, Institute of Labor Economics (IZA).
    5. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    6. Goedkoop, F. & Dijkstra, J. & Flache, A., 2022. "A social network perspective on involvement in community energy initiatives: The role of direct and extended social ties to initiators," Energy Policy, Elsevier, vol. 171(C).
    7. Wei, Zheng & Kim, Daeyoung, 2021. "On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    8. Marie-Therese Puth & Gerhard Tutz & Nils Heim & Eva Münster & Matthias Schmid & Moritz Berger, 2020. "Tree-based modeling of time-varying coefficients in discrete time-to-event models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 545-572, July.
    9. Christian Dudel, 2021. "Expanding the Markov Chain Toolbox: Distributions of Occupation Times and Waiting Times," Sociological Methods & Research, , vol. 50(1), pages 401-428, February.
    10. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    11. Johanna Jauernig & Stephan Brosig & Silke Hüttel, 2023. "Profession and residency matter: Farmers' preferences for farmland price regulation in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 816-834, September.
    12. Raja Chakir & Thibault Laurent & Anne Ruiz-Gazen & Christine Thomas-Agnan & Céline Vignes, 2017. "Prédiction de l’usage des sols sur un zonage régulier à différentes résolutions et à partir de covariables facilement accessibles," Revue économique, Presses de Sciences-Po, vol. 68(3), pages 435-469.
    13. Diego Opazo & Sebastián Moreno & Eduardo Álvarez-Miranda & Jordi Pereira, 2021. "Analysis of First-Year University Student Dropout through Machine Learning Models: A Comparison between Universities," Mathematics, MDPI, vol. 9(20), pages 1-27, October.
    14. Diego Montano & Richard Peter, 2022. "Informal care-giving and the intention to give up employment: the role of perceived supervisor behaviour in a cohort of German employees," European Journal of Ageing, Springer, vol. 19(3), pages 575-585, September.
    15. P. Brighi & R. Patuelli & G. Torluccio, 2012. "Self-Financing of Traditional and R&D Investments: Evidence from Italian SMEs," Working Papers wp845, Dipartimento Scienze Economiche, Universita' di Bologna.
    16. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    17. J Roman Arguello & Carolina Sellanes & Yann Ru Lou & Robert A Raguso, 2013. "Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    18. Manuel Salas-Velasco, 2024. "Transitioning from the University to the Workplace: A Duration Model with Grouped Data," Stats, MDPI, vol. 7(3), pages 1-13, July.
    19. Marjolein Fokkema & Niels Smits & Achim Zeileis & Torsten Hothorn & Henk Kelderman, 2015. "Detecting Treatment-Subgroup Interactions in Clustered Data with Generalized Linear Mixed-Effects Model Trees," Working Papers 2015-10, Faculty of Economics and Statistics, Universität Innsbruck.
    20. Andrew S. Fullerton & Jun Xu, 2018. "Constrained and Unconstrained Partial Adjacent Category Logit Models for Ordinal Response Variables," Sociological Methods & Research, , vol. 47(2), pages 169-206, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:4:d:10.1007_s11634-018-0345-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.