IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i20p2599-d657400.html
   My bibliography  Save this article

Analysis of First-Year University Student Dropout through Machine Learning Models: A Comparison between Universities

Author

Listed:
  • Diego Opazo

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar 2520000, Chile)

  • Sebastián Moreno

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar 2520000, Chile)

  • Eduardo Álvarez-Miranda

    (School of Economics and Business, Universidad de Talca, Talca 3460493, Chile
    Instituto Sistemas Complejos de Ingeniería, Santiago 8370398, Chile)

  • Jordi Pereira

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar 2520000, Chile)

Abstract

Student dropout, defined as the abandonment of a high education program before obtaining the degree without reincorporation, is a problem that affects every higher education institution in the world. This study uses machine learning models over two Chilean universities to predict first-year engineering student dropout over enrolled students, and to analyze the variables that affect the probability of dropout. The results show that instead of combining the datasets into a single dataset, it is better to apply a model per university. Moreover, among the eight machine learning models tested over the datasets, gradient-boosting decision trees reports the best model. Further analyses of the interpretative models show that a higher score in almost any entrance university test decreases the probability of dropout, the most important variable being the mathematical test. One exception is the language test, where a higher score increases the probability of dropout.

Suggested Citation

  • Diego Opazo & Sebastián Moreno & Eduardo Álvarez-Miranda & Jordi Pereira, 2021. "Analysis of First-Year University Student Dropout through Machine Learning Models: A Comparison between Universities," Mathematics, MDPI, vol. 9(20), pages 1-27, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2599-:d:657400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/20/2599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/20/2599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paula Giovagnoli, 2005. "Determinants in University Desertion and Graduation: An Application using Duration Models," Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 0(1-2), pages 59-90, January-D.
    2. Catalina A. Vallejos & Mark F. J. Steel, 2017. "Bayesian survival modelling of university outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 613-631, February.
    3. Behr Andreas & Giese Marco & Teguim K Herve D. & Theune Katja, 2020. "Early Prediction of University Dropouts – A Random Forest Approach," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 240(6), pages 743-789, December.
    4. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    5. Paula Giovagnoli, 2005. "Determinants in University Desertion and Graduation: An Application using Duration Models," Económica, Instituto de Investigaciones Económicas, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 0(1-2), pages 59-90, January-D.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raghul Gandhi Venkatesan & Dhivya Karmegam & Bagavandas Mappillairaju, 2024. "Exploring statistical approaches for predicting student dropout in education: a systematic review and meta-analysis," Journal of Computational Social Science, Springer, vol. 7(1), pages 171-196, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossella Iraci Capuccinello, 2014. "Determinants and timing of dropping out decisions: evidence from the UK FE sector," Working Papers 15742191, Lancaster University Management School, Economics Department.
    2. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    3. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    4. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    5. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    6. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    7. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    8. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    9. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    10. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    11. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    12. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    13. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    14. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    15. Atanas Ivanov, 2020. "Decision Trees for Evaluation of Mathematical Competencies in the Higher Education: A Case Study," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    16. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    17. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    18. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    19. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    20. Matthias Bogaert & Michel Ballings & Dirk Van den Poel, 2018. "Evaluating the importance of different communication types in romantic tie prediction on social media," Annals of Operations Research, Springer, vol. 263(1), pages 501-527, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2599-:d:657400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.