IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0070219.html
   My bibliography  Save this article

Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?

Author

Listed:
  • J Roman Arguello
  • Carolina Sellanes
  • Yann Ru Lou
  • Robert A Raguso

Abstract

Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation.

Suggested Citation

  • J Roman Arguello & Carolina Sellanes & Yann Ru Lou & Robert A Raguso, 2013. "Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
  • Handle: RePEc:plo:pone00:0070219
    DOI: 10.1371/journal.pone.0070219
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070219
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0070219&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0070219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manolis Kellis & Nick Patterson & Matthew Endrizzi & Bruce Birren & Eric S. Lander, 2003. "Sequencing and comparison of yeast species to identify genes and regulatory elements," Nature, Nature, vol. 423(6937), pages 241-254, May.
    2. Dray, Stéphane & Dufour, Anne-Béatrice, 2007. "The ade4 Package: Implementing the Duality Diagram for Ecologists," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i04).
    3. Yee, Thomas W., 2010. "The VGAM Package for Categorical Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i10).
    4. Minrong Ai & Soohong Min & Yael Grosjean & Charlotte Leblanc & Rati Bell & Richard Benton & Greg S. B. Suh, 2010. "Acid sensing by the Drosophila olfactory system," Nature, Nature, vol. 468(7324), pages 691-695, December.
    5. Joseph Schacherer & Joshua A. Shapiro & Douglas M. Ruderfer & Leonid Kruglyak, 2009. "Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae," Nature, Nature, vol. 458(7236), pages 342-345, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole Camarasa & Isabelle Sanchez & Pascale Brial & Frédéric Bigey & Sylvie Dequin, 2011. "Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-12, September.
    2. Pengfei Song & Wen Qin & YanGan Huang & Lei Wang & Zhenyuan Cai & Tongzuo Zhang, 2020. "Grazing Management Influences Gut Microbial Diversity of Livestock in the Same Area," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    3. Jiang, Xianfeng & Packer, Frank, 2019. "Credit ratings of Chinese firms by domestic and global agencies: Assessing the determinants and impact," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 178-193.
    4. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    5. Liesbeth François & Katrien Wijnrocx & Frédéric G Colinet & Nicolas Gengler & Bettine Hulsegge & Jack J Windig & Nadine Buys & Steven Janssens, 2017. "Genomics of a revived breed: Case study of the Belgian campine cattle," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    6. Yiwei Fan & Jiaqi Gu & Guosheng Yin, 2023. "Sparse concordance‐based ordinal classification," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 934-961, September.
    7. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Goedkoop, F. & Dijkstra, J. & Flache, A., 2022. "A social network perspective on involvement in community energy initiatives: The role of direct and extended social ties to initiators," Energy Policy, Elsevier, vol. 171(C).
    9. Serra W. Buchanan & Megan Baskerville & Maren Oelbermann & Andrew M. Gordon & Naresh V. Thevathasan & Marney E. Isaac, 2020. "Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    10. Moritz Berger & Thomas Welchowski & Steffen Schmitz-Valckenberg & Matthias Schmid, 2019. "A classification tree approach for the modeling of competing risks in discrete time," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 965-990, December.
    11. Catharine Prussing & Kevin J Emerson & Sara A Bickersmith & Maria Anice Mureb Sallum & Jan E Conn, 2019. "Minimal genetic differentiation of the malaria vector Nyssorhynchus darlingi associated with forest cover level in Amazonian Brazil," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    12. Wei, Zheng & Kim, Daeyoung, 2021. "On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    13. Marie-Therese Puth & Gerhard Tutz & Nils Heim & Eva Münster & Matthias Schmid & Moritz Berger, 2020. "Tree-based modeling of time-varying coefficients in discrete time-to-event models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 545-572, July.
    14. Christian Dudel, 2021. "Expanding the Markov Chain Toolbox: Distributions of Occupation Times and Waiting Times," Sociological Methods & Research, , vol. 50(1), pages 401-428, February.
    15. Javier J How & Saket Navlakha & Sreekanth H Chalasani, 2021. "Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-38, November.
    16. Anna Favati & Josefina Zidar & Hanne Thorpe & Per Jensen & Hanne Løvlie, 2016. "The ontogeny of personality traits in the red junglefowl, Gallus gallus," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(2), pages 484-493.
    17. Johanna Jauernig & Stephan Brosig & Silke Hüttel, 2023. "Profession and residency matter: Farmers' preferences for farmland price regulation in Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 816-834, September.
    18. repec:jss:jstsof:22:i01 is not listed on IDEAS
    19. Valerie Storms & Marleen Claeys & Aminael Sanchez & Bart De Moor & Annemieke Verstuyf & Kathleen Marchal, 2010. "The Effect of Orthology and Coregulation on Detecting Regulatory Motifs," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-11, February.
    20. Robert K Bradley & Adam Roberts & Michael Smoot & Sudeep Juvekar & Jaeyoung Do & Colin Dewey & Ian Holmes & Lior Pachter, 2009. "Fast Statistical Alignment," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-15, May.
    21. Alessandro Bellino & Daniela Baldantoni & Vittoria Milano & Lucia Santorufo & Jérôme Cortet & Giulia Maisto, 2021. "Spatial Patterns and Scales of Collembola Taxonomic and Functional Diversity in Urban Parks," Sustainability, MDPI, vol. 13(23), pages 1-11, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0070219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.