IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v253y2016i3p869-879.html
   My bibliography  Save this article

Spline based survival model for credit risk modeling

Author

Listed:
  • Luo, Sirong
  • Kong, Xiao
  • Nie, Tingting

Abstract

Survival modeling has been adapted in retail banking because of its capability to analyze the censored data. It is an important tool for credit risk scoring, stress testing and credit asset evaluation. In this paper, we introduce a regression spline based discrete time survival model. The flexibility of spline function allows us to model the nonlinear and irregular shape of the hazard functions. By incorporating the regression spline into the multinomial logistic regression, this approach complements the existing Cox model. From a practical perspective, the logistic regression is relatively easy to understand and implement, and the simple parametric form is especially advantageous for predictive scoring. Using a credit card dataset, we demonstrate how to build a cubic regression spline based survival model. We also compare the performance of spline based discrete time survival model with the classical Cox model, our results show the spline based survival model can provide similar statistical explanatory and improve the prediction accuracy for attrition model which has low event rate.

Suggested Citation

  • Luo, Sirong & Kong, Xiao & Nie, Tingting, 2016. "Spline based survival model for credit risk modeling," European Journal of Operational Research, Elsevier, vol. 253(3), pages 869-879.
  • Handle: RePEc:eee:ejores:v:253:y:2016:i:3:p:869-879
    DOI: 10.1016/j.ejor.2016.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716301035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    2. David B. Gross, 2002. "An Empirical Analysis of Personal Bankruptcy and Delinquency," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 319-347, March.
    3. Bellotti, Tony & Crook, Jonathan, 2013. "Forecasting and stress testing credit card default using dynamic models," International Journal of Forecasting, Elsevier, vol. 29(4), pages 563-574.
    4. Poletti Laurini, Márcio & Moura, Marcelo, 2010. "Constrained smoothing B-splines for the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 339-350, April.
    5. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    6. J Banasik & J N Crook & L C Thomas, 1999. "Not if but when will borrowers default," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1185-1190, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calabrese, Raffaella & Dombrowski, Timothy & Mandel, Antoine & Pace, R. Kelley & Zanin, Luca, 2024. "Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida," European Journal of Operational Research, Elsevier, vol. 314(1), pages 377-392.
    2. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    3. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    4. Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
    5. Moritz Berger & Thomas Welchowski & Steffen Schmitz-Valckenberg & Matthias Schmid, 2019. "A classification tree approach for the modeling of competing risks in discrete time," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 965-990, December.
    6. Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thi Mai Luong, 2020. "Selection Effects of Lender and Borrower Choices on Risk Measurement, Management and Prudential Regulation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2020, January-A.
    2. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    3. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    4. Arno Botha & Tanja Verster & Roelinde Bester, 2024. "The TruEnd-procedure: Treating trailing zero-valued balances in credit data," Papers 2404.17008, arXiv.org.
    5. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    6. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    7. Medina-Olivares, Victor & Lindgren, Finn & Calabrese, Raffaella & Crook, Jonathan, 2023. "Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour," European Journal of Operational Research, Elsevier, vol. 310(2), pages 860-873.
    8. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    9. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    10. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    11. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.
    12. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    13. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    14. Naveed Chehrazi & Thomas A. Weber, 2015. "Dynamic Valuation of Delinquent Credit-Card Accounts," Management Science, INFORMS, vol. 61(12), pages 3077-3096, December.
    15. Ewa Wycinka, 2015. "Modelling Time to Default Or Early Repayment as Competing Risks (Modelowanie czasu do zaprzestania splat rat kredytu lub wczesniejszej splaty kredytu jako zdarzen konkurujacych )," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 13(55), pages 146-157.
    16. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    17. repec:syb:wpbsba:03/2013 is not listed on IDEAS
    18. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    19. Bocchio, Cecilia & Crook, Jonathan & Andreeva, Galina, 2023. "The impact of macroeconomic scenarios on recurrent delinquency: A stress testing framework of multi-state models for mortgages," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1655-1677.
    20. Mariusz Górajski & Dobromił Serwa & Zuzanna Wośko, 2019. "Measuring expected time to default under stress conditions for corporate loans," Empirical Economics, Springer, vol. 57(1), pages 31-52, July.
    21. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:253:y:2016:i:3:p:869-879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.