IDEAS home Printed from https://ideas.repec.org/a/sae/urbstu/v58y2021i15p3118-3139.html
   My bibliography  Save this article

Life between buildings from a street view image: What do big data analytics reveal about neighbourhood organisational vitality?

Author

Listed:
  • Mingshu Wang

    (University of Twente, The Netherlands)

  • Floris Vermeulen

    (University of Amsterdam, The Netherlands)

Abstract

This article uses big data from images captured by Google Street View (GSV) to analyse the extent to which the built environment impacts the survival rate of neighbourhood-based social organisations in Amsterdam, the Netherlands. These organisations are important building blocks for social life in urban neighbourhoods. Examining these organisations’ relationships with their environment has been a useful way to study their vitality. To extract data on built environment features from GSV images, we applied a deep learning model, DeepLabv3+. We then used elastic net regression to test the relationship between the built environment empirically – distinguishing between car-related, walking-related and mixed-use land infrastructure – and the survival of neighbourhood organisations. This testing approach is novel, to our knowledge not yet having been applied in Urban Studies. Besides revealing the effects of built environment features on the social life between buildings, our study points to the value of easily applicable observational big data. Data captured by GSV and other recently developed methods offer researchers the opportunity to conduct detailed yet relatively swift and inexpensive studies without resorting to overly coarse or common subjective measurements.

Suggested Citation

  • Mingshu Wang & Floris Vermeulen, 2021. "Life between buildings from a street view image: What do big data analytics reveal about neighbourhood organisational vitality?," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3118-3139, November.
  • Handle: RePEc:sae:urbstu:v:58:y:2021:i:15:p:3118-3139
    DOI: 10.1177/0042098020957198
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0042098020957198
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0042098020957198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alicia N. Rambaldi & Cameron S. Fletcher & Kerry Collins & Ryan R.J. McAllister, 2013. "Housing Shadow Prices in an Inundation-prone Suburb," Urban Studies, Urban Studies Journal Limited, vol. 50(9), pages 1889-1905, July.
    2. Nikhil Naik & Ramesh Raskar & César A. Hidalgo, 2016. "Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance," American Economic Review, American Economic Association, vol. 106(5), pages 128-132, May.
    3. Amber L. Pearson & Amanda Rzotkiewicz & Jennifer L. Pechal & Carl J. Schmidt & Heather R. Jordan & Adam Zwickle & M. Eric Benbow, 2019. "Initial Evidence of the Relationships between the Human Postmortem Microbiome and Neighborhood Blight and Greening Efforts," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 109(3), pages 958-978, May.
    4. Yu Ye & Wei Zeng & Qiaomu Shen & Xiaohu Zhang & Yi Lu, 2019. "The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images," Environment and Planning B, , vol. 46(8), pages 1439-1457, October.
    5. Leyden, K.M., 2003. "Social Capital and the Built Environment: The Importance of Walkable Neighborhoods," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1546-1551.
    6. Wood, Lisa & Frank, Lawrence D. & Giles-Corti, Billie, 2010. "Sense of community and its relationship with walking and neighborhood design," Social Science & Medicine, Elsevier, vol. 70(9), pages 1381-1390, May.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Aghaabbasi, Mahdi & Moeinaddini, Mehdi & Shah, Muahammad Zaly & Asadi-Shekari, Zohreh, 2018. "Addressing issues in the use of Google tools for assessing pedestrian built environments," Journal of Transport Geography, Elsevier, vol. 73(C), pages 185-198.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Kamruzzaman, Md. & Wood, Lisa & Hine, Julian & Currie, Graham & Giles-Corti, Billie & Turrell, Gavin, 2014. "Patterns of social capital associated with transit oriented development," Journal of Transport Geography, Elsevier, vol. 35(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jon Bannister & Anthony O’Sullivan, 2021. "Big Data in the city," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3061-3070, November.
    2. Jiayi Liu & Yanbin Li & Yanhan Xu & Castiel Chen Zhuang & Yang Hu & Yue Yu, 2024. "Impacts of Built Environment on Urban Vitality in Cultural Districts: A Case Study of Haikou and Suzhou," Land, MDPI, vol. 13(6), pages 1-26, June.
    3. Kim, Ji-Il & Yu, Chia-Yuan & Woo, Ayoung, 2023. "The impacts of visual street environments on obesity: The mediating role of walking behaviors," Journal of Transport Geography, Elsevier, vol. 109(C).
    4. Linnet Taylor, 2021. "The taming of chaos: Optimal cities and the state of the art in urban systems research," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3196-3202, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    3. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    4. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    13. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    14. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    15. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    16. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    17. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    18. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    19. Won Hee Lee, 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function," Mathematics, MDPI, vol. 11(5), pages 1-15, March.
    20. Mohammad Amin Amani & Mohammad Mahdi Nasiri, 2023. "A novel cross docking system for distributing the perishable products considering preemption: a machine learning approach," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:urbstu:v:58:y:2021:i:15:p:3118-3139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.gla.ac.uk/departments/urbanstudiesjournal .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.