Author
Listed:
- Yu Ye
(Tongji University, China)
- Wei Zeng
(Shenzhen Institutes of Advanced Technology, China)
- Qiaomu Shen
(Hong Kong University of Science and Technology, Hong Kong)
- Xiaohu Zhang
(Singapore-MIT Alliance for Research and Technology Centre (SMART), Singapore)
- Yi Lu
Abstract
This study proposes a workable approach for quantitatively measuring the perceptual-based visual quality of streets, which has often relied on subjective impressions or feelings. With the help of recently emerged street view images and machine learning algorithms, an evaluation model has been trained to assess the perceived visual quality with accuracy similar to that of experienced urban designers, to provide full coverage and detailed results for a citywide area. The town centre of Shanghai was selected for the site. Around 140,000 screenshots from Baidu Street View were processed and a machine learning algorithm, SegNet, was applied to intelligently extract the pixels representing key elements affecting the visual quality of streets, including the building frontage, greenery, sky view, pedestrian space, motorisation, and diversity. A Java-based program was then produced to automatically collect the preferences of experienced urban designers on representative sample images. Another machine learning algorithm, i.e. an artificial neural network, was used to train an evaluation model to achieve a citywide, high-resolution evaluation of the visual quality of the streets. Further validation through different approaches shows this evaluation model obtains a satisfactory accuracy. The results from the artificial neural network also help to explore the high or low effects of various key elements on visual quality. In short, this study contributes to the development of human-centred planning and design by providing continuous measurements of an ‘unmeasurable’ quality across large-scale areas. Meanwhile, insights on the perceptual-based visual quality and detailed mapping of various key elements in streets can assist in more efficient street renewal by providing accurate design guidance.
Suggested Citation
Yu Ye & Wei Zeng & Qiaomu Shen & Xiaohu Zhang & Yi Lu, 2019.
"The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images,"
Environment and Planning B, , vol. 46(8), pages 1439-1457, October.
Handle:
RePEc:sae:envirb:v:46:y:2019:i:8:p:1439-1457
DOI: 10.1177/2399808319828734
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:46:y:2019:i:8:p:1439-1457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.