IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v16y2022i3s1751157722000621.html
   My bibliography  Save this article

Extracting the interdisciplinary specialty structures in social media data-based research: A clustering-based network approach

Author

Listed:
  • Fan, Yangliu
  • Lehmann, Sune
  • Blok, Anders

Abstract

As science is becoming more interdisciplinary and potentially more data driven over time, it is important to investigate the changing specialty structures and the emerging intellectual patterns of research fields and domains. By employing a clustering-based network approach, we map the contours of a novel interdisciplinary domain – research using social media data – and analyze how the specialty structures and intellectual contributions are organized and evolve. We construct and validate a large-scale (N = 12,732) dataset of research papers using social media data from the Web of Science (WoS) database, complementing it with citation relationships from the Microsoft Academic Graph (MAG) database. We conduct cluster analyses in three types of citation-based empirical networks and compare the observed features with those generated by null network models. Overall, we find three core thematic research subfields – interdisciplinary socio-cultural sciences, health sciences, and geo-informatics – that designate the main epicenter of research interests recognized by this domain itself. Nevertheless, at the global topological level of all networks, we observe an increasingly interdisciplinary trend over the years, fueled by publications not only from core fields such as communication and computer science, but also from a wide variety of fields in the social sciences, natural sciences, and technology. Our results characterize the specialty structures of this domain at a time of growing emphasis on big social data, and we discuss the implications for indicating interdisciplinarity.

Suggested Citation

  • Fan, Yangliu & Lehmann, Sune & Blok, Anders, 2022. "Extracting the interdisciplinary specialty structures in social media data-based research: A clustering-based network approach," Journal of Informetrics, Elsevier, vol. 16(3).
  • Handle: RePEc:eee:infome:v:16:y:2022:i:3:s1751157722000621
    DOI: 10.1016/j.joi.2022.101310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157722000621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2022.101310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Caroline S. Wagner & Lutz Bornmann, 2018. "Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 567-592, February.
    2. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    3. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    4. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    5. Ruobing Chi & Jonathan Young, 2013. "The interdisciplinary structure of research on intercultural relations: a co-citation network analysis study," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 147-171, July.
    6. Muh-Chyun Tang & Yun Jen Cheng & Kuang Hua Chen, 2017. "A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 985-1008, November.
    7. Sven E. Hug & Martin P. Brändle, 2017. "The coverage of Microsoft Academic: analyzing the publication output of a university," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1551-1571, December.
    8. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    9. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    11. Ed J. Rinia & Thed. N. Van Leeuwen & Eppo E.W. Bruins & Hendrik G. Van Vuren & Anthony F.J. Van Raan, 2001. "Citation delay in interdisciplinary knowledge exchange," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 293-309, April.
    12. Lin Zhang & Ronald Rousseau & Wolfgang Glänzel, 2016. "Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1257-1265, May.
    13. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    14. Martin Rosvall & Carl T Bergstrom, 2010. "Mapping Change in Large Networks," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-7, January.
    15. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    16. M.J. Cobo & A.G. López‐Herrera & E. Herrera‐Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    17. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    18. Loet Leydesdorff & Lutz Bornmann, 2016. "The operationalization of “fields” as WoS subject categories (WCs) in evaluative bibliometrics: The cases of “library and information science” and “science & technology studies”," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 707-714, March.
    19. Loet Leydesdorff & Carole Probst, 2009. "The delineation of an interdisciplinary specialty in terms of a journal set: The case of communication studies," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1709-1718, August.
    20. Ismael Rafols & Loet Leydesdorff, 2009. "Content‐based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(9), pages 1823-1835, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leydesdorff, Loet & Bornmann, Lutz & Zhou, Ping, 2016. "Construction of a pragmatic base line for journal classifications and maps based on aggregated journal-journal citation relations," Journal of Informetrics, Elsevier, vol. 10(4), pages 902-918.
    2. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    3. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    4. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    5. Aparisi Torrijo, Sofia & Ribes Giner, Gabriela, 2022. "Entrepreneurial leadership factors: a bibliometric analysis for the 2000-2020 period," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    6. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    7. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    8. Mingchun Cao & Ilan Alon, 2020. "Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda," Sustainability, MDPI, vol. 12(17), pages 1-40, August.
    9. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    10. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    12. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    13. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    14. Moshe Blidstein & Maayan Zhitomirsky-Geffet, 2022. "Towards a new generic framework for citation network generation and analysis in the humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4275-4297, July.
    15. Ryo Takahashi & Kenji Kaibe & Kazuyuki Suzuki & Sayaka Takahashi & Kotaro Takeda & Marc Hansen & Michiaki Yumoto, 2023. "New concept of the affinity between research fields using academic journal data in Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3507-3534, June.
    16. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
    17. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    18. Wenceslao Arroyo-Machado & Daniel Torres-Salinas & Nicolas Robinson-Garcia, 2021. "Identifying and characterizing social media communities: a socio-semantic network approach to altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9267-9289, November.
    19. Murat Kocak & Carlos García-Zorita & Sergio Marugán-Lázaro & Murat Perit Çakır & Elías Sanz-Casado, 2019. "Mapping and clustering analysis on neuroscience literature in Turkey: a bibliometric analysis from 2000 to 2017," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1339-1366, December.
    20. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:16:y:2022:i:3:s1751157722000621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.