IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v22y2016i6p1380-1403.html
   My bibliography  Save this article

Modelling and prediction of a destination’s monthly average daily rate and occupancy rate based on hotel room prices offered online

Author

Listed:
  • Noelia Oses
  • Jon Kepa Gerrikagoitia
  • Aurkene Alzua

    (Centro de Investigación Cooperativa en Turismo – CICtourGUNE, Spain)

Abstract

Tourism metrics are essential for managing a destination. Hotel performance metrics such as average daily rate and occupancy rate are two of the most prominent metrics for the industry. The authors’ research group works on developing methods for estimating tourism metrics based on digital footprint. Data available publicly on the Internet, including hotel room prices, are collected daily. This article shows that the prices offered online have a high positive correlation with those reported by official statistics at the Nomenclature of Units for Territorial Statistics 2 level after the online prices have been preprocessed and, thus, the relevance of this data source is established. This article then presents a model for explaining and predicting mean hotel occupancy rates by destination based on these prices. The results are very promising, the fit is excellent and the predictions are also good. In summary, prices have moved from reflecting the expected demand to reflecting the actual demand and occupancy rate.

Suggested Citation

  • Noelia Oses & Jon Kepa Gerrikagoitia & Aurkene Alzua, 2016. "Modelling and prediction of a destination’s monthly average daily rate and occupancy rate based on hotel room prices offered online," Tourism Economics, , vol. 22(6), pages 1380-1403, December.
  • Handle: RePEc:sae:toueco:v:22:y:2016:i:6:p:1380-1403
    DOI: 10.5367/te.2015.0491
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5367/te.2015.0491
    Download Restriction: no

    File URL: https://libkey.io/10.5367/te.2015.0491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Song, Haiyan & Witt, Stephen F. & Jensen, Thomas C., 2003. "Tourism forecasting: accuracy of alternative econometric models," International Journal of Forecasting, Elsevier, vol. 19(1), pages 123-141.
    2. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    3. Yap, Ghialy & Allen, David, 2011. "Investigating other leading indicators influencing Australian domestic tourism demand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1365-1374.
    4. Haensel, Alwin & Koole, Ger, 2011. "Booking horizon forecasting with dynamic updating: A case study of hotel reservation data," International Journal of Forecasting, Elsevier, vol. 27(3), pages 942-960, July.
    5. Haensel, Alwin & Koole, Ger, 2011. "Booking horizon forecasting with dynamic updating: A case study of hotel reservation data," International Journal of Forecasting, Elsevier, vol. 27(3), pages 942-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guizzardi, Andrea & Ballestra, Luca Vincenzo & D'Innocenzo, Enzo, 2022. "Hotel dynamic pricing, stochastic demand and covid-19," Annals of Tourism Research, Elsevier, vol. 97(C).
    2. Damonte, L. Taylor & Woodside, Arch G., 2021. "Are lodging revenue cycles leading indicators for shifts in financial well-being?," Journal of Business Research, Elsevier, vol. 129(C), pages 465-473.
    3. Walheer, Barnabé & Zhang, Linjia, 2018. "Profit Luenberger and Malmquist-Luenberger indexes for multi-activity decision making units: the case of the star-rated hotel industry in China," RIEI Working Papers 2018-06, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    4. Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. Sainaghi, Ruggero & Phillips, Paul & Zavarrone, Emma, 2017. "Performance measurement in tourism firms: A content analytical meta-approach," Tourism Management, Elsevier, vol. 59(C), pages 36-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    2. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    3. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    4. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    5. Willem A. Naudé & Andrea Saayman, 2005. "Determinants of Tourist Arrivals in Africa: A Panel Data Regression Analysis," Tourism Economics, , vol. 11(3), pages 365-391, September.
    6. Houssine Choyakh, 2008. "A Model of Tourism Demand for Tunisia: Inclusion of the Tourism Investment Variable," Tourism Economics, , vol. 14(4), pages 819-838, December.
    7. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    8. Michael Toma & Richard McGrath & James Payne, 2009. "Hotel tax receipts and the 'Midnight in the Garden of Good and Evil': a time series intervention seasonal ARIMA model with time-varying variance," Applied Economics Letters, Taylor & Francis Journals, vol. 16(7), pages 653-656.
    9. António Rua & Carlos Melo Gouveia & Nuno Lourenço, 2020. "Forecasting tourism with targeted predictors in a data-rich environment," Working Papers w202005, Banco de Portugal, Economics and Research Department.
    10. Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    11. Naragain Phumchusri & Phoom Ungtrakul, 2020. "Hotel daily demand forecasting for high-frequency and complex seasonality data: a case study in Thailand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(1), pages 8-25, February.
    12. Yap, Ghialy, 2013. "The impacts of exchange rates on Australia's domestic and outbound travel markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 139-150.
    13. Zvi Schwartz & Timothy Webb & Jean-Pierre I van der Rest & Larissa Koupriouchina, 2021. "Enhancing the accuracy of revenue management system forecasts: The impact of machine and human learning on the effectiveness of hotel occupancy forecast combinations across multiple forecasting horizo," Tourism Economics, , vol. 27(2), pages 273-291, March.
    14. E. Martinez-De-Pison & J. Fernandez-Ceniceros & A. V. Pernia-Espinoza & F. J. Martinez-De-Pison & Andres Sanz-Garcia, 2016. "Hotel Reservation Forecasting Using Flexible Soft Computing Techniques: A Case of Study in a Spanish Hotel," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1211-1234, September.
    15. Han Liu & Ying Liu & Yonglian Wang & Changchun Pan, 2019. "Hot topics and emerging trends in tourism forecasting research: A scientometric review," Tourism Economics, , vol. 25(3), pages 448-468, May.
    16. Lourenço, Nuno & Gouveia, Carlos Melo & Rua, António, 2021. "Forecasting tourism with targeted predictors in a data-rich environment," Economic Modelling, Elsevier, vol. 96(C), pages 445-454.
    17. Adam G. Walke & Thomas M. Fullerton Jr., 2019. "Metropolitan Hotel Sector Forecast Accuracy in El Paso," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 47(2), pages 179-191, June.
    18. Nicholas Apergis & Andrea Mervar & James E. Payne, 2017. "Forecasting disaggregated tourist arrivals in Croatia," Tourism Economics, , vol. 23(1), pages 78-98, February.
    19. Michael Murimi & Billy Wadongo & Tom Olielo, 2021. "Determinants of revenue management practices and their impacts on the financial performance of hotels in Kenya: a proposed theoretical framework," Future Business Journal, Springer, vol. 7(1), pages 1-7, December.
    20. Haiyan Song & Egon Smeral & Gang Li & Jason L. Chen, 2008. "Tourism Forecasting: Accuracy of Alternative Econometric Models Revisited," WIFO Working Papers 326, WIFO.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:22:y:2016:i:6:p:1380-1403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.