IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v46y2017i3p370-389.html
   My bibliography  Save this article

Detecting Latent Heterogeneity

Author

Listed:
  • Judea Pearl

Abstract

We address the task of determining, from statistical averages alone, whether a population under study consists of several subpopulations, unknown to the investigator, each responding to a given treatment markedly differently. We show that such determination is feasible in three cases: (1) randomized trials with binary treatments, (2) models where treatment effects can be identified by adjustment for covariates, and (3) models in which treatment effects can be identified by mediating instruments. In each of these cases, we provide an explicit condition which, if confirmed empirically, proves that treatment effect is not uniform but varies appreciably across individuals.

Suggested Citation

  • Judea Pearl, 2017. "Detecting Latent Heterogeneity," Sociological Methods & Research, , vol. 46(3), pages 370-389, August.
  • Handle: RePEc:sae:somere:v:46:y:2017:i:3:p:370-389
    DOI: 10.1177/0049124115600597
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124115600597
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124115600597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. Judea Pearl, 2014. "Comment: Understanding Simpson's Paradox," The American Statistician, Taylor & Francis Journals, vol. 68(1), pages 8-13, February.
    4. Joshua D. Angrist, 1998. "Estimating the Labor Market Impact of Voluntary Military Service Using Social Security Data on Military Applicants," Econometrica, Econometric Society, vol. 66(2), pages 249-288, March.
    5. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    6. Pearl, Judea, 2015. "Trygve Haavelmo And The Emergence Of Causal Calculus," Econometric Theory, Cambridge University Press, vol. 31(1), pages 152-179, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    2. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    3. Biørn, Erik, 2017. "Identification, Instruments, Omitted Variables, and Rudimentary Models: Fallacies in the ‘Experimental Approach’ to Econometrics," Memorandum 13/2017, Oslo University, Department of Economics.
    4. Matilde Cappelletti & Leonardo M. Giuffrida & Leonardo Maria Giuffrida, 2024. "Targeted Bidders in Government Tenders," CESifo Working Paper Series 11142, CESifo.
    5. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    6. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    7. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    8. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    9. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    10. Lamin Dibba & Manfred Zeller & Aliou Diagne, 2017. "The impact of new Rice for Africa (NERICA) adoption on household food security and health in the Gambia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(5), pages 929-944, October.
    11. Joshua D. Angrist & Jörn-Steffen Pischke, 2017. "Undergraduate Econometrics Instruction: Through Our Classes, Darkly," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 125-144, Spring.
    12. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    13. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2003. "Evaluating the impact of education on earnings in the UK: Models, methods and results from the NCDS," IFS Working Papers W03/20, Institute for Fiscal Studies.
    14. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    15. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    16. Cunha, Flavio & Heckman, James J., 2007. "Identifying and Estimating the Distributions of Ex Post and Ex Ante Returns to Schooling," Labour Economics, Elsevier, vol. 14(6), pages 870-893, December.
    17. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    18. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    19. Keswell, Malcolm & Carter, Michael R., 2014. "Poverty and land redistribution," Journal of Development Economics, Elsevier, vol. 110(C), pages 250-261.
    20. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:46:y:2017:i:3:p:370-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.