IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i4p810-822.html
   My bibliography  Save this article

Accident causation models: A comparison of SCM and 24Model

Author

Listed:
  • Ping Chen
  • Gui Fu
  • Yi Wang
  • Han Meng
  • Mingkai Lv

Abstract

The Swiss Cheese Model (SCM) and 24Model have proved over the years to be lasting influences for many researchers and practitioners in various safety areas. However, as one practical tool for accident analysis, a gap still exists for whether these two models are consistent in current studies. A theoretical comparison of these two models to reveal constructive foundation, related concepts, correspondence to each level of cause-effect and characteristics of sub modules were presented. The basic structure of the two modular models is consistent and each sub module can match. The foundation of the two models is different, reflecting the differences between Eastern and Western cultures. 24Model overcomes the fuzziness of SCM model classification and divides organizational factors into two stages: safety management system and safety culture and refines the meaning of accident and hazard. Hazard identification based on SCM is presented at the design and commissioning of the system, while the identification of 24Model following PDCA cycle, which is an continuous improvement throughout the entire life cycle of the system. In conclusion, 24Model is a deepening and development of SCM, and explicit taxonomy for individual and organization is proposed by integrating factors on SCM. The comparisons will build a bridge of communication and exchange between East and West accident causation theories and will lead to more knowledge of the causes to the accident, placing focus on need for improved organizational behaviors, more efficient safety management systems and safety culture in companies.

Suggested Citation

  • Ping Chen & Gui Fu & Yi Wang & Han Meng & Mingkai Lv, 2023. "Accident causation models: A comparison of SCM and 24Model," Journal of Risk and Reliability, , vol. 237(4), pages 810-822, August.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:810-822
    DOI: 10.1177/1748006X221099094
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221099094
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221099094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leveson, Nancy, 2015. "A systems approach to risk management through leading safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 17-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    2. Antonovsky, A. & Pollock, C. & Straker, L., 2016. "System reliability as perceived by maintenance personnel on petroleum production facilities," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 58-65.
    3. Jintao Liu & Keping Li & Wei Zheng & Jiebei Zhu, 2019. "An importance order analysis method for causes of railway signaling system hazards based on complex networks," Journal of Risk and Reliability, , vol. 233(4), pages 567-579, August.
    4. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    5. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    6. Thieme, Christoph A. & Utne, Ingrid B., 2017. "Safety performance monitoring of autonomous marine systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 264-275.
    7. Anastasios Plioutsias & Nektarios Karanikas & Maria Mikela Chatzimihailidou, 2018. "Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 562-584, March.
    8. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    9. Kim, Tae-eun & Gausdal, Anne Haugen, 2017. "Leading for safety: A weighted safety leadership model in shipping," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 458-466.
    10. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Sun, Hao & Wang, Haiqing & Yang, Ming & Reniers, Genserik, 2022. "A STAMP-based approach to quantitative resilience assessment of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    15. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    16. Ahmad Dehghan Nejad & Amirhosein Bahramzadeh, 2021. "The competency of organizational safety control structure; a framework for evaluation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1180-1198, December.
    17. Jiawen Tang & Di Wang & Wei Ye & Bing Dong & Huijuan Yang, 2022. "Safety Risk Assessment of Air Traffic Control System Based on the Game Theory and the Cloud Matter Element Analysis," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    18. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    20. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:810-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.