IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i6d10.1007_s13198-021-01373-8.html
   My bibliography  Save this article

The competency of organizational safety control structure; a framework for evaluation

Author

Listed:
  • Ahmad Dehghan Nejad

    (Shahid Beheshti University of Medical Science (SBMU))

  • Amirhosein Bahramzadeh

    (Shahid Beheshti University of Medical Sciences (SBMU))

Abstract

The latest generation of accident models demonstrate that the root causes of the systemic accidents in complex sociotechnical systems derive from the system’s inefficient organizational safety control structure; the "structure" that has not adapted itself to the under-controlled dynamic system and, consequently, is not able to control system’s hazardous behaviors. Hence, in this paper, a clear approach is presented to evaluate organizational safety control structure’s competency. In this approach, the modelling process of the System Theoretic Process Analysis (STPA) is used to model hierarchical safety control structure; then, Bayesian Belief Net (BBN) is applied for the competency evaluation of the structure. Clearly, a novel procedure is introduced for converting an STPA-based safety control structure to a BBN for achieving some invaluable safety lead indicators via quantitative analysis.

Suggested Citation

  • Ahmad Dehghan Nejad & Amirhosein Bahramzadeh, 2021. "The competency of organizational safety control structure; a framework for evaluation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1180-1198, December.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01373-8
    DOI: 10.1007/s13198-021-01373-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01373-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01373-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    2. Ahmad Dehghan Nejad & Reza Gholamnia & Ahmad Alibabaee, 2017. "A new framework to model and analyze organizational aspect of safety control structure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1008-1025, November.
    3. Leveson, Nancy, 2015. "A systems approach to risk management through leading safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 17-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    3. Meng, Xiangkun & Li, Xinhong & Wang, Weigang & Song, Guozheng & Chen, Guoming & Zhu, Jingyu, 2021. "A novel methodology to analyze accident path in deepwater drilling operation considering uncertain information," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    5. Mahajan, Haneet Singh & Bradley, Thomas & Pasricha, Sudeep, 2017. "Application of systems theoretic process analysis to a lane keeping assist system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 177-183.
    6. Anastasios Plioutsias & Nektarios Karanikas & Maria Mikela Chatzimihailidou, 2018. "Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 562-584, March.
    7. Ping Chen & Gui Fu & Yi Wang & Han Meng & Mingkai Lv, 2023. "Accident causation models: A comparison of SCM and 24Model," Journal of Risk and Reliability, , vol. 237(4), pages 810-822, August.
    8. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Selvik, Jon Tømmerås, 2020. "On the importance of systems thinking when using the ALARP principle for risk management," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    10. Kim, Tae-eun & Gausdal, Anne Haugen, 2017. "Leading for safety: A weighted safety leadership model in shipping," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 458-466.
    11. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    12. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Antonovsky, A. & Pollock, C. & Straker, L., 2016. "System reliability as perceived by maintenance personnel on petroleum production facilities," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 58-65.
    14. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Berner, Christine Louise & Flage, Roger, 2017. "Creating risk management strategies based on uncertain assumptions and aspects from assumption-based planning," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 10-19.
    16. Santos, Paula Luisa Costa Teixeira & Monteiro, Paulo Adelino Antunes & Studic, Milena & Majumdar, Arnab, 2017. "A methodology used for the development of an Air Traffic Management functional system architecture," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 445-457.
    17. Hew Cameron Merrett & Wei Tong Chen & Jao Jia Horng, 2019. "A Systems Analysis Approach to Identifying Critical Success Factors in Drinking Water Source Protection Programs," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    18. Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
    19. Jintao Liu & Keping Li & Wei Zheng & Jiebei Zhu, 2019. "An importance order analysis method for causes of railway signaling system hazards based on complex networks," Journal of Risk and Reliability, , vol. 233(4), pages 567-579, August.
    20. Anders Jensen & Terje Aven, 2017. "Hazard/threat identification: Using functional resonance analysis method in conjunction with the Anticipatory Failure Determination method," Journal of Risk and Reliability, , vol. 231(4), pages 383-389, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01373-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.