IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v133y2020ics096007792030031x.html
   My bibliography  Save this article

Fractional Lévy stable motion: Finite difference iterative forecasting model

Author

Listed:
  • Liu, He
  • Song, Wanqing
  • Li, Ming
  • Kudreyko, Aleksey
  • Zio, Enrico

Abstract

In this study we use the fractional Lévy stable motion (fLsm) to establish a finite iterative forecasting model with Long Range Dependent (LRD) characteristics. The LRD forecasting model considers the influence of current and past trends in stochastic sequences on future trends. We find that the discussed model can accurately forecast the trends of stochastic sequences. This fact enables us to introduce the fLsm as the fractional-order model of Lévy stable motion. Self-similarity and LRD characteristics of the flsm model is introduced by using the relationship between self-similar index and the characteristic index. Thus, the order Stochastic Differential Equation (FSDE) which describes the fLsm can be obtained. The parameters of the FSDE were estimated by using a novel characteristic function method. The forecasting model with the LRD characteristics was obtained by discretization of FSDE. The Monte Carlo method was applied to demonstrate the feasibility of the forecasting model. The power load forecasting history data demonstrates the advantages of our model.

Suggested Citation

  • Liu, He & Song, Wanqing & Li, Ming & Kudreyko, Aleksey & Zio, Enrico, 2020. "Fractional Lévy stable motion: Finite difference iterative forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s096007792030031x
    DOI: 10.1016/j.chaos.2020.109632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030031X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    2. Song, Wanqing & Li, Ming & Li, Yuanyuan & Cattani, Carlo & Chi, Chi-Hung, 2019. "Fractional Brownian motion: Difference iterative forecasting models," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 347-355.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Li, Ming, 2017. "Record length requirement of long-range dependent teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 164-187.
    5. Jumarie, Guy, 2005. "Merton's model of optimal portfolio in a Black-Scholes Market driven by a fractional Brownian motion with short-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 585-598, December.
    6. Aleksander Janicki & Aleksander Weron, 1994. "Can One See Alpha-stable Variables and Processes?," HSC Research Reports HSC/94/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    7. Zanzotto, P. A., 1997. "On solutions of one-dimensional stochastic differential equations driven by stable Lévy motion," Stochastic Processes and their Applications, Elsevier, vol. 68(2), pages 209-228, June.
    8. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
    9. Soumendra N. Lahiri & Ujjwal Das & Daniel J. Nordman, 2019. "Empirical Likelihood for a Long Range Dependent Process Subordinated to a Gaussian Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 447-466, July.
    10. Song Wanqing & Xiaoxian Chen & Carlo Cattani & Enrico Zio, 2020. "Multifractional Brownian Motion and Quantum-Behaved Partial Swarm Optimization for Bearing Degradation Forecasting," Complexity, Hindawi, vol. 2020, pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tajmirriahi, Mahnoosh & Amini, Zahra, 2021. "Modeling of seizure and seizure-free EEG signals based on stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Li, Ming, 2021. "Generalized fractional Gaussian noise and its application to traffic modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    2. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    3. Li, Ming & Wang, Anqi, 2020. "Fractal teletraffic delay bounds in computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.
    5. Yue Qi & Yue Wang, 2023. "Innovating and Pricing Carbon-Offset Options of Asian Styles on the Basis of Jump Diffusions and Fractal Brownian Motions," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
    6. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
    7. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Song, Wanqing & Li, Ming & Li, Yuanyuan & Cattani, Carlo & Chi, Chi-Hung, 2019. "Fractional Brownian motion: Difference iterative forecasting models," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 347-355.
    9. Li, Ming, 2021. "Generalized fractional Gaussian noise and its application to traffic modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    10. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    11. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    12. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    13. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    14. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    15. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    16. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    17. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    18. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    19. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    20. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s096007792030031x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.