IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8623530.html
   My bibliography  Save this article

Remaining Useful Life Prediction of Rolling Bearings Using PSR, JADE, and Extreme Learning Machine

Author

Listed:
  • Yongbin Liu
  • Bing He
  • Fang Liu
  • Siliang Lu
  • Yilei Zhao
  • Jiwen Zhao

Abstract

Rolling bearings play a pivotal role in rotating machinery. The degradation assessment and remaining useful life (RUL) prediction of bearings are critical to condition-based maintenance. However, sensitive feature extraction still remains a formidable challenge. In this paper, a novel feature extraction method is introduced to obtain the sensitive features through phase space reconstitution (PSR) and joint with approximate diagonalization of Eigen-matrices (JADE). Firstly, the original features are extracted from bearing vibration signals in time and frequency domain. Secondly, the PSR is applied to embed the original features into high dimensional phase space. The between-class and within-class scatter ( ) are calculated to evaluate the feature sensitivity through the phase point distribution of different degradation stages and then different weights are assigned to the corresponding features based on the calculated . Thirdly, the JADE is employed to fuse the weighted features to obtain the advanced features which can better reflect the bearing degradation process. Finally, the advanced features are input into the extreme learning machine (ELM) to train the RUL prediction model. A set of experimental case studies are carried out to verify the effectiveness of the proposed method. The results show that the extracted advanced features can better reflect the degradation process compared to traditional features and could effectively predict the RUL of bearing.

Suggested Citation

  • Yongbin Liu & Bing He & Fang Liu & Siliang Lu & Yilei Zhao & Jiwen Zhao, 2016. "Remaining Useful Life Prediction of Rolling Bearings Using PSR, JADE, and Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, April.
  • Handle: RePEc:hin:jnlmpe:8623530
    DOI: 10.1155/2016/8623530
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/8623530.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/8623530.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/8623530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
    2. Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8623530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.