IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i5p761-774.html
   My bibliography  Save this article

Analyzing uncertainties in model response using the point estimate method: Applications from railway asset management

Author

Listed:
  • Thorsten Neumann
  • Beate Dutschk
  • René Schenkendorf

Abstract

Predicting current and future states of rail infrastructure based on existing data and measurements is essential for optimal maintenance and operation of railway systems. Mathematical models are helpful tools for detecting failures and extrapolating current states into the future. This, however, inherently gives rise to uncertainties in the model response that must be analyzed carefully to avoid misleading results and conclusions. Commonly, Monte Carlo simulations are used for such analyses which often require a large number of sample points to be evaluated for convergence. Moreover, even if quite close to the exact distributions, the Monte Carlo approach necessarily provides approximate results only. In contrast to that, the present contribution reviews an alternative way of computing important statistical quantities of the model response. The so-called point estimate method, which can be shown to be exact under certain constraints, usually (i.e. depending on the number of input variables) works with only a few specific sample points. Thus, the point estimate method helps to reduce the computational load for model evaluation considerably in the case of complex models or large-scale applications. To demonstrate the point estimate method, five academic but typical examples of railway asset management are analyzed in more detail: (a) track degradation, (b) reliability analysis of composite systems, (c) terminal reliability in rail networks, (d) failure detection/identification using decision trees, and (e) track condition modeling incorporating maintenance. Advantages as well as limitations of the point estimate method in comparison with common Monte Carlo simulations are discussed.

Suggested Citation

  • Thorsten Neumann & Beate Dutschk & René Schenkendorf, 2019. "Analyzing uncertainties in model response using the point estimate method: Applications from railway asset management," Journal of Risk and Reliability, , vol. 233(5), pages 761-774, October.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:5:p:761-774
    DOI: 10.1177/1748006X19825593
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19825593
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19825593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Yueying & Wang, Qiuping A. & Li, Wei & Cai, Xu, 2018. "Analytic uncertainty and sensitivity analysis of models with input correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 140-162.
    2. Andrews, John & Prescott, Darren & De Rozières, Florian, 2014. "A stochastic model for railway track asset management," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 76-84.
    3. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    2. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    3. Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
    4. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    5. Saleh, Ali & Remenyte-Prescott, Rasa & Prescott, Darren & Chiachío, Manuel, 2024. "Intelligent and adaptive asset management model for railway sections using the iPN method," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    7. Andrews, John & Fecarotti, Claudia, 2017. "System design and maintenance modelling for safety in extended life operation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 95-108.
    8. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    9. Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
    10. Andrews, John & Tolo, Silvia, 2023. "Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    12. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    14. Cheng, Ruijun & Zhou, Jin & Chen, Dewang & Song, Yongduan, 2016. "Model-based verification method for solving the parameter uncertainty in the train control system," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 169-182.
    15. Alice Consilvio & José Solís-Hernández & Noemi Jiménez-Redondo & Paolo Sanetti & Federico Papa & Iñigo Mingolarra-Garaizar, 2020. "On Applying Machine Learning and Simulative Approaches to Railway Asset Management: The Earthworks and Track Circuits Case Studies," Sustainability, MDPI, vol. 12(6), pages 1-24, March.
    16. Whiteley, M & Dunnett, S & Jackson, L, 2020. "Simulation of polymer electrolyte membrane fuel cell degradation using an integrated Petri Net and 0D model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    17. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Xihui Chen & Aimin Ji & Gang Cheng, 2019. "A Novel Deep Feature Learning Method Based on the Fused-Stacked AEs for Planetary Gear Fault Diagnosis," Energies, MDPI, vol. 12(23), pages 1-18, November.
    20. Leite, Gustavo de Novaes Pires & Araújo, Alex Maurício & Rosas, Pedro André Carvalho, 2018. "Prognostic techniques applied to maintenance of wind turbines: a concise and specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1917-1925.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:5:p:761-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.