IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v163y2017icp95-108.html
   My bibliography  Save this article

System design and maintenance modelling for safety in extended life operation

Author

Listed:
  • Andrews, John
  • Fecarotti, Claudia

Abstract

It is frequently the most cost effective option to operate systems and infrastructure over an extended life period rather than enter a new build programme. The condition and performance of existing systems operated beyond their originally intended design life are controlled through maintenance. For new systems there is the option to simultaneously develop the design and the maintenance processes for best effect when a longer life expectancy is planned. This paper reports a combined Petri net and Bayesian network approach to investigate the effects of design and maintenance features on the system performance. The method has a number of features which overcome limitations in traditionally used system performance modelling techniques, such as fault tree analysis, and also enhances the modelling capabilities. Significantly, for the assessment of aging systems, the new method avoids the need to assume a constant failure rate over the lifetime duration. In addition the assumption of independence between component failures events is no longer required. In comparison with the commonly applied system modelling techniques, this new methodology also has the capability to represent the maintenance process in far greater detail and as such options for: inspection and testing, servicing, reactive repair and component replacement based on condition, age or use can all be included. In considering system design options, levels of redundancy and diversity along with the component types selected can be investigated. All of the options for the design and maintenance can be incorporated into a single integrated Petri net and Bayesian network model and turned on and off as required to predict the effects of any combination of options selected. In addition this model has the ability to evaluate different system failure modes.

Suggested Citation

  • Andrews, John & Fecarotti, Claudia, 2017. "System design and maintenance modelling for safety in extended life operation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 95-108.
  • Handle: RePEc:eee:reensy:v:163:y:2017:i:c:p:95-108
    DOI: 10.1016/j.ress.2017.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016301338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doguc, Ozge & Ramirez-Marquez, Jose Emmanuel, 2009. "A generic method for estimating system reliability using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 542-550.
    2. Andrews, John & Prescott, Darren & De Rozières, Florian, 2014. "A stochastic model for railway track asset management," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 76-84.
    3. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    4. D R Prescott & J D Andrews & C G Downes, 2009. "Multiplatform phased mission reliability modelling for mission planning," Journal of Risk and Reliability, , vol. 223(1), pages 27-39, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng, Jingyu & Prescott, Darren, 2017. "A hierarchical coloured Petri net model of fleet maintenance with cannibalisation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 290-305.
    2. Mocellin, Paolo & Pilenghi, Lisa, 2023. "Semi-quantitative approach to prioritize risk in industrial chemical plants aggregating safety, economics and ageing: A case study," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Chahrour, Nour & Nasr, Mohamad & Tacnet, Jean-Marc & Bérenguer, Christophe, 2021. "Deterioration modeling and maintenance assessment using physics-informed stochastic Petri nets: Application to torrent protection structures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Amrin, Andas & Zarikas, Vasileios & Spitas, Christos, 2018. "Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra†framework," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 211-225.
    3. Kondakci, Suleyman, 2015. "Analysis of information security reliability: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 275-299.
    4. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    5. Zhong, X. & Ichchou, M. & Saidi, A., 2010. "Reliability assessment of complex mechatronic systems using a modified nonparametric belief propagation algorithm," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1174-1185.
    6. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    7. Doguc, Ozge & Emmanuel Ramirez-Marquez, Jose, 2012. "An automated method for estimating reliability of grid systems using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 96-105.
    8. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    9. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    12. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    13. Vimal Vijayan & Sanjay K Chaturvedi, 2021. "Multi-component maintenance grouping optimization based on stochastic dependency," Journal of Risk and Reliability, , vol. 235(2), pages 293-305, April.
    14. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    15. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    16. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    17. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    18. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    20. Daniele Codetta-Raiteri & Luigi Portinale, 2014. "Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 228(5), pages 488-503, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:163:y:2017:i:c:p:95-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.