IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i5p719-730.html
   My bibliography  Save this article

Gear pitting fault diagnosis using disentangled features from unsupervised deep learning

Author

Listed:
  • Yongzhi Qu
  • Yue Zhang
  • Miao He
  • David He
  • Chen Jiao
  • Zude Zhou

Abstract

Effective feature extraction is critical for machinery fault diagnosis and prognosis. The use of time–frequency features for machinery fault diagnosis has prevailed in the last decade. However, more attentions have been drawn to machine learning–based features. While time–frequency domain features can be directly correlated to fault types and fault levels, data-driven features are typically abstract representations. Therefore, classical machine learning approaches require large amount of training data to classify these abstract features for fault diagnosis. This article proposed a fully unsupervised feature extraction method for “meaningful†feature mining, named disentangled tone mining. It is shown that disentangled tone mining can effectively extract the hidden “trend†associated with machinery health state, which can be used directly for online anomaly detection and prediction. Compared with wavelet transform and time domain statistics, disentangled tone mining can better extract fault-related features and reflect the fault degradation process. Shallow methods, such as principal component analysis, multidimensional scaling and single-layer sparse autoencoder, are shown to be inferior in terms of disentangled feature learning for machinery signals. Simulation analysis is also provided to demonstrate and explain the potential mechanism underlying the proposed method.

Suggested Citation

  • Yongzhi Qu & Yue Zhang & Miao He & David He & Chen Jiao & Zude Zhou, 2019. "Gear pitting fault diagnosis using disentangled features from unsupervised deep learning," Journal of Risk and Reliability, , vol. 233(5), pages 719-730, October.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:5:p:719-730
    DOI: 10.1177/1748006X18822447
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18822447
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18822447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    2. Hui Zhang & Cunhua Pan & Yuanxin Wang & Min Xu & Fu Zhou & Xin Yang & Lou Zhu & Chao Zhao & Yangfan Song & Hongwei Chen, 2022. "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction," Energies, MDPI, vol. 15(15), pages 1-14, July.
    3. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    4. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    5. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    6. Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
    7. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
    9. Xiaobo Bi & Jiansheng Lin & Daijie Tang & Fengrong Bi & Xin Li & Xiao Yang & Teng Ma & Pengfei Shen, 2020. "VMD-KFCM Algorithm for the Fault Diagnosis of Diesel Engine Vibration Signals," Energies, MDPI, vol. 13(1), pages 1-20, January.
    10. Malinowski, Simon & Chebel-Morello, Brigitte & Zerhouni, Noureddine, 2015. "Remaining useful life estimation based on discriminating shapelet extraction," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 279-288.
    11. Peters, Benjamin & Yildirim, Murat & Gebraeel, Nagi & Paynabar, Kamran, 2020. "Severity-based diagnosis for vehicular electric systems with multiple, interacting fault modes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Lee, Jinwook & Kim, Myungyon & Ko, Jin Uk & Jung, Joon Ha & Sun, Kyung Ho & Youn, Byeng D., 2022. "Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    13. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Shrestha, Yash Raj & Krishna, Vaibhav & von Krogh, Georg, 2021. "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, Elsevier, vol. 123(C), pages 588-603.
    15. Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
    16. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    17. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Shungang Ning & Jianzhong Sun & Cui Liu & Yang Yi, 2021. "Applications of deep learning in big data analytics for aircraft complex system anomaly detection," Journal of Risk and Reliability, , vol. 235(5), pages 923-940, October.
    19. Yuanyuan Yang & Md Muhie Menul Haque & Dongling Bai & Wei Tang, 2021. "Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review," Energies, MDPI, vol. 14(21), pages 1-26, October.
    20. Yong Hu & Boyu Ping & Deliang Zeng & Yuguang Niu & Yaokui Gao, 2020. "Modeling of Coal Mill System Used for Fault Simulation," Energies, MDPI, vol. 13(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:5:p:719-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.