IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v235y2021i5p923-940.html
   My bibliography  Save this article

Applications of deep learning in big data analytics for aircraft complex system anomaly detection

Author

Listed:
  • Shungang Ning
  • Jianzhong Sun
  • Cui Liu
  • Yang Yi

Abstract

Big data analytics with deep learning approach have attracted increasing attention in transportation engineering, involving operations, maintenance, and safety. In commercial aviation sectors, operational, and maintenance data produced on modern aircraft is increasing exponentially, and predictive analysis of these data is an exciting and promising field in aviation maintenance, which has a potential to revolutionize aerospace maintenance industry. This study illustrates the state-of-the-art applications of deep learning in big data analytics for predictive maintenance and a real-world case study for commercial aircraft. A Long Short-Term Memory network based Auto-Encoders (LSTM-AE) is proposed for complex aircraft system fault detection and classification, which makes use of the raw time-series data from heterogeneous sensors. The proposed method uses nominal time-series samples corresponding to healthy behavior of the system to learn a reconstruction model based on LSTM-AE framework. Then the system health index (HI) and fault feature vectors are derived from the reconstruction error matrix for fault detection and classification. The proposed method is demonstrated on a real-world data set from a commercial aircraft fleet. The typical PCV faults as well as the 390 F sensor and 450 F sensor faults due to sense line air leakage are successfully detected and distinguished based on the extracted features. The case study results show that the computed HI can effectively characterize the health state of the aircraft system and different fault types can be identified with high confidence, which is helpful for line fault troubleshooting.

Suggested Citation

  • Shungang Ning & Jianzhong Sun & Cui Liu & Yang Yi, 2021. "Applications of deep learning in big data analytics for aircraft complex system anomaly detection," Journal of Risk and Reliability, , vol. 235(5), pages 923-940, October.
  • Handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:923-940
    DOI: 10.1177/1748006X211001979
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211001979
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211001979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Taotao & Droguett, Enrique López & Modarres, Mohammad, 2020. "A common cause failure model for components under age-related degradation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    3. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    5. Hui Zhang & Cunhua Pan & Yuanxin Wang & Min Xu & Fu Zhou & Xin Yang & Lou Zhu & Chao Zhao & Yangfan Song & Hongwei Chen, 2022. "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction," Energies, MDPI, vol. 15(15), pages 1-14, July.
    6. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    9. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    10. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    11. Dehghan Shoorkand, Hassan & Nourelfath, Mustapha & Hajji, Adnène, 2024. "A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
    13. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Yanxi Zhang & Deyong You & Xiangdong Gao & Congyi Wang & Yangjin Li & Perry P. Gao, 2020. "Real-time monitoring of high-power disk laser welding statuses based on deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 799-814, April.
    16. Hesabi, Hadis & Nourelfath, Mustapha & Hajji, Adnène, 2022. "A deep learning predictive model for selective maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).
    18. Jafary, Bentolhoda & Mele, Andrew & Fiondella, Lance, 2020. "Component-based system reliability subject to positive and negative correlation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Mitici, Mihaela & de Pater, Ingeborg & Barros, Anne & Zeng, Zhiguo, 2023. "Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:923-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.