IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p228-d304670.html
   My bibliography  Save this article

VMD-KFCM Algorithm for the Fault Diagnosis of Diesel Engine Vibration Signals

Author

Listed:
  • Xiaobo Bi

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
    School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China)

  • Jiansheng Lin

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Daijie Tang

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Fengrong Bi

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Xin Li

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Xiao Yang

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Teng Ma

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Pengfei Shen

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

Abstract

Accurate and timely fault diagnosis for the diesel engine is crucial to guarantee it works safely and reliably, and reduces the maintenance costs. A novel diagnosis method based on variational mode decomposition (VMD) and kernel-based fuzzy c-means clustering (KFCM) is proposed in this paper. Firstly, the VMD algorithm is optimized to select the most suitable K value adaptively. Then KFCM is employed to classify the feature parameters of intrinsic mode functions (IMFs). Through the comparison of many different parameters, the singular value is selected finally because of the good classification effect. In this paper, the diesel engine fault simulation experiment was carried out to simulate various faults including valve clearance fault, fuel supply fault and common rail pressure fault. Each kind of machine fault varies in different degrees. To prove the effectiveness of VMD-KFCM, the proposed method is compared with empirical mode decomposition (EMD)-KFCM, ensemble empirical mode decomposition (EEMD)-KFCM, VMD-back propagation neural network (BPNN), and VMD-deep belief network (DBN). Results show that VMD-KFCM has advantages in accuracy, simplicity, and efficiency. Therefore, the method proposed in this paper can be used for diesel engine fault diagnosis, and has good application prospects.

Suggested Citation

  • Xiaobo Bi & Jiansheng Lin & Daijie Tang & Fengrong Bi & Xin Li & Xiao Yang & Teng Ma & Pengfei Shen, 2020. "VMD-KFCM Algorithm for the Fault Diagnosis of Diesel Engine Vibration Signals," Energies, MDPI, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:228-:d:304670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    2. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyue Liu & Yan Yan & Kaibo Hu & Shan Zhang & Hongjie Li & Zhen Zhang & Tingna Shi, 2022. "Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition," Energies, MDPI, vol. 15(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    4. Weijun Wang & Dan Zhao & Liguo Fan & Yulong Jia, 2019. "Study on Icing Prediction of Power Transmission Lines Based on Ensemble Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine," Energies, MDPI, vol. 12(11), pages 1-21, June.
    5. Shrestha, Yash Raj & Krishna, Vaibhav & von Krogh, Georg, 2021. "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, Elsevier, vol. 123(C), pages 588-603.
    6. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    7. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    8. Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
    9. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    10. Luo, Haizhi & Zhang, Yiwen & Gao, Xinyu & Liu, Zhengguang & Song, Xia & Meng, Xiangzhao & Yang, Xiaohu, 2024. "Unveiling land use-carbon Nexus: Spatial matrix-enhanced neural network for predicting commercial and residential carbon emissions," Energy, Elsevier, vol. 305(C).
    11. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    12. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    13. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    14. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    15. Hui Zhang & Cunhua Pan & Yuanxin Wang & Min Xu & Fu Zhou & Xin Yang & Lou Zhu & Chao Zhao & Yangfan Song & Hongwei Chen, 2022. "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction," Energies, MDPI, vol. 15(15), pages 1-14, July.
    16. Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.
    17. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    18. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    19. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    20. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:228-:d:304670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.