IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4359195.html
   My bibliography  Save this article

An Improved Belief Entropy and Its Application in Decision-Making

Author

Listed:
  • Deyun Zhou
  • Yongchuan Tang
  • Wen Jiang

Abstract

Uncertainty measure in data fusion applications is a hot topic; quite a few methods have been proposed to measure the degree of uncertainty in Dempster-Shafer framework. However, the existing methods pay little attention to the scale of the frame of discernment (FOD), which means a loss of information. Due to this reason, the existing methods cannot measure the difference of uncertain degree among different FODs. In this paper, an improved belief entropy is proposed in Dempster-Shafer framework. The proposed belief entropy takes into consideration more available information in the body of evidence (BOE), including the uncertain information modeled by the mass function, the cardinality of the proposition, and the scale of the FOD. The improved belief entropy is a new method for uncertainty measure in Dempster-Shafer framework. Based on the new belief entropy, a decision-making approach is designed. The validity of the new belief entropy is verified according to some numerical examples and the proposed decision-making approach.

Suggested Citation

  • Deyun Zhou & Yongchuan Tang & Wen Jiang, 2017. "An Improved Belief Entropy and Its Application in Decision-Making," Complexity, Hindawi, vol. 2017, pages 1-15, March.
  • Handle: RePEc:hin:complx:4359195
    DOI: 10.1155/2017/4359195
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/4359195.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/4359195.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4359195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongchuan Tang & Deyun Zhou & Wen Jiang, 2016. "A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-16, August.
    2. Mehdi KESHAVARZ GHORABAEE & Edmundas Kazimieras ZAVADSKAS & Maghsoud AMIRI & Jurgita ANTUCHEVICIENE, 2016. "A New Method Of Assessment Based On Fuzzy Ranking And Aggregated Weights (Afraw) For Mcdm Problems Under Type-2 Fuzzy Environment," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 39-68.
    3. Aven, Terje, 2016. "Supplementing quantitative risk assessments with a stage addressing the risk understanding of the decision maker," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 51-57.
    4. Xiaoyan Su & Sankaran Mahadevan & Peida Xu & Yong Deng, 2015. "Dependence Assessment in Human Reliability Analysis Using Evidence Theory and AHP," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1296-1316, July.
    5. Yi Yang & Yuanli Liu, 2016. "Iterative Approximation of Basic Belief Assignment Based on Distance of Evidence," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-27, February.
    6. Tavana, Madjid & Di Caprio, Debora, 2016. "Modeling synergies in multi-criteria supplier selection and order allocation: An application to commodity tradingAuthor-Name: Sodenkamp, Mariya A," European Journal of Operational Research, Elsevier, vol. 254(3), pages 859-874.
    7. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    8. Madjid Tavana & Kaveh Khalili-Damghani & Rahman Rahmatian, 2015. "A hybrid fuzzy MCDM method for measuring the performance of publicly held pharmaceutical companies," Annals of Operations Research, Springer, vol. 226(1), pages 589-621, March.
    9. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    10. Nilashi, Mehrbakhsh & Ahmadi, Hossein & Ahani, Ali & Ravangard, Ramin & Ibrahim, Othman bin, 2016. "Determining the importance of Hospital Information System adoption factors using Fuzzy Analytic Network Process (ANP)," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 244-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dingyi Gan & Bin Yang & Yongchuan Tang, 2020. "An Extended Base Belief Function in Dempster–Shafer Evidence Theory and Its Application in Conflict Data Fusion," Mathematics, MDPI, vol. 8(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    2. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    3. Yongchuan Tang & Deyun Zhou & Wen Jiang, 2016. "A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-16, August.
    4. Kheybari, Siamak & Rezaie, Fariba Mahdi & Farazmand, Hadis, 2020. "Analytic network process: An overview of applications," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    5. Shuli Liu & Xinwang Liu, 2016. "A Sample Survey Based Linguistic MADM Method with Prospect Theory for Online Shopping Problems," Group Decision and Negotiation, Springer, vol. 25(4), pages 749-774, July.
    6. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    7. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    8. Samadhiya, Ashutosh & Yadav, Sanjeev & Kumar, Anil & Majumdar, Abhijit & Luthra, Sunil & Garza-Reyes, Jose Arturo & Upadhyay, Arvind, 2023. "The influence of artificial intelligence techniques on disruption management: Does supply chain dynamism matter?," Technology in Society, Elsevier, vol. 75(C).
    9. Chao Fu & Wenjun Chang, 2024. "A Markov Chain-Based Group Consensus Method with Unknown Parameters," Group Decision and Negotiation, Springer, vol. 33(5), pages 1019-1048, October.
    10. Williams, Colin C. & Horodnic, Adrian V., 2017. "Rethinking informal payments by patients in Europe: An institutional approach," Health Policy, Elsevier, vol. 121(10), pages 1053-1062.
    11. Ghadimi, Pezhman & Ghassemi Toosi, Farshad & Heavey, Cathal, 2018. "A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain," European Journal of Operational Research, Elsevier, vol. 269(1), pages 286-301.
    12. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    13. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    14. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    15. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    16. Aven, Terje, 2013. "Probabilities and background knowledge as a tool to reflect uncertainties in relation to intentional acts," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 229-234.
    17. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    18. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    19. Maimouna Diouf & Choonjong Kwak, 2018. "Fuzzy AHP, DEA, and Managerial Analysis for Supplier Selection and Development; From the Perspective of Open Innovation," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    20. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4359195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.