IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v229y2015i1p36-45.html
   My bibliography  Save this article

Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data

Author

Listed:
  • David ValiÅ¡
  • Libor Žák
  • OndÅ™ej Pokora

Abstract

At present, numerous approaches are devoted to monitoring a system state. Their intention is to determine the current state of a system and predict reliability parameters for the future. This article addresses one of the several possible approaches that allows us to determine a system technical state on the basis of diagnostic data. These diagnostic data are from the area of tribiodagnostics, namely, engine oil. The article examines iron and lead particles that are selected deliberately with respect to their origin in kinematic parts of the system and their degree of correlation with operation measures. The particles occur in oil during both operating time and calendar time development. To model their occurrence during operation time, we have used, in the first part of the article, a mathematical regression method to set parameters. In the second part, we have applied a diffusion model based on a Wiener process. The results confirm that we are able to estimate the residual technical life of a system. Moreover, the results enable us to schedule properly the intervals of preventive maintenance (oil change) and to plan a mission/operation. This results in optimising life cycle costs. It is assumed that the potential of the diagnostic data will be extracted by other approaches and methods. In the subsequent work, it will be useful to determine specific interval values of optimised preventive maintenance.

Suggested Citation

  • David ValiÅ¡ & Libor Žák & OndÅ™ej Pokora, 2015. "Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data," Journal of Risk and Reliability, , vol. 229(1), pages 36-45, February.
  • Handle: RePEc:sae:risrel:v:229:y:2015:i:1:p:36-45
    DOI: 10.1177/1748006X14547789
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X14547789
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X14547789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles E. Smith & Petr Lánský, 1994. "A reliability application of a mixture of inverse gaussian distributions," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 10(1), pages 61-69.
    2. W Wang & B Hussin, 2009. "Plant residual time modelling based on observed variables in oil samples," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 789-796, June.
    3. W Wang, 2007. "A prognosis model for wear prediction based on oil-based monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 887-893, July.
    4. Wenbin Wang & Wenjuan Zhang, 2005. "A model to predict the residual life of aircraft engines based upon oil analysis data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 276-284, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altun, Mustafa & Comert, Salih Vehbi, 2016. "A change-point based reliability prediction model using field return data," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 175-184.
    2. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
    3. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    4. Xiaosheng, Si & Li, Huiqin & Zhang, Zhengxin & Li, Naipeng, 2024. "A Wiener-process-inspired semi-stochastic filtering approach for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    8. Ying Liao & Yisha Xiang & Min Wang, 2021. "Health assessment and prognostics based on higher‐order hidden semi‐Markov models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(2), pages 259-276, March.
    9. Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
    10. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
    11. Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
    12. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    13. Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.
    14. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:229:y:2015:i:1:p:36-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.