Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data
Author
Abstract
Suggested Citation
DOI: 10.1177/1748006X14547789
Download full text from publisher
References listed on IDEAS
- W Wang, 2007. "A prognosis model for wear prediction based on oil-based monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 887-893, July.
- Charles E. Smith & Petr Lánský, 1994. "A reliability application of a mixture of inverse gaussian distributions," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 10(1), pages 61-69.
- W Wang & B Hussin, 2009. "Plant residual time modelling based on observed variables in oil samples," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 789-796, June.
- Wenbin Wang & Wenjuan Zhang, 2005. "A model to predict the residual life of aircraft engines based upon oil analysis data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 276-284, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Altun, Mustafa & Comert, Salih Vehbi, 2016. "A change-point based reliability prediction model using field return data," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 175-184.
- Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
- W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
- Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
- Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
- Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
- Ying Liao & Yisha Xiang & Min Wang, 2021. "Health assessment and prognostics based on higher‐order hidden semi‐Markov models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(2), pages 259-276, March.
- Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
- Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
- Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
- Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
- Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.
- Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
More about this item
Keywords
Failure prediction; system residual technical life estimation; field data; Wiener process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:229:y:2015:i:1:p:36-45. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.