IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i7d10.1057_palgrave.jors.2602185.html
   My bibliography  Save this article

A prognosis model for wear prediction based on oil-based monitoring

Author

Listed:
  • W Wang

    (University of Salford
    Harbin Institute of Technology)

Abstract

This paper reports on the development of a wear prediction model based on stochastic filtering and hidden Markov theory. It is assumed that observations at discrete time points are available such as metal concentrations from oil-based monitoring, which are related to the true underlying state of the system which is unobservable. The system state is represented by a generic term of wear which is modelled by a continuous hidden Markov Chain using a Beta distribution. We formulated a recursive model to predict the current and future system state given past observed monitoring information to date. The model is useful to wear-based monitoring such as oil analysis. Numerical examples are presented in the paper based on simulated and real data.

Suggested Citation

  • W Wang, 2007. "A prognosis model for wear prediction based on oil-based monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 887-893, July.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:7:d:10.1057_palgrave.jors.2602185
    DOI: 10.1057/palgrave.jors.2602185
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602185
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Linguo & Tang, Kwei, 1997. "Monitoring machine operations using on-line sensors," European Journal of Operational Research, Elsevier, vol. 96(3), pages 479-492, February.
    2. Kumar, Dhananjay & Westberg, Ulf, 1997. "Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting," European Journal of Operational Research, Elsevier, vol. 99(3), pages 507-515, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
    3. Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
    4. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    5. David Vališ & Libor Žák & Ondřej Pokora, 2015. "Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data," Journal of Risk and Reliability, , vol. 229(1), pages 36-45, February.
    6. Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.
    7. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    8. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenbin Wang & Wenjuan Zhang, 2005. "A model to predict the residual life of aircraft engines based upon oil analysis data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 276-284, April.
    2. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    3. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    4. W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
    5. Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
    6. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.
    7. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    8. L Bessegato & R Quinino & L L Ho & L Duczmal, 2011. "Variable interval sampling in economical designs for online process control of attributes with misclassification errors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1365-1375, July.
    9. Ankush Tripathi & M. Hari Prasad, 2024. "RCM based optimization of maintenance strategies for marine diesel engine using genetic algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3757-3775, August.
    10. Percy, David F. & Kobbacy, Khairy A. H., 2000. "Determining economical maintenance intervals," International Journal of Production Economics, Elsevier, vol. 67(1), pages 87-94, August.
    11. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    12. B. Larivière & D. Van Den Poel, 2005. "Investigating the post-complaint period by means of survival analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/299, Ghent University, Faculty of Economics and Business Administration.
    13. Scott G. Frickenstein & Lyn R. Whitaker, 2003. "Age replacement policies in two time scales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(6), pages 592-613, September.
    14. Carr, Matthew J. & Wang, Wenbin, 2011. "An approximate algorithm for prognostic modelling using condition monitoring information," European Journal of Operational Research, Elsevier, vol. 211(1), pages 90-96, May.
    15. Jiang, R. & Jardine, A.K.S., 2008. "Health state evaluation of an item: A general framework and graphical representation," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 89-99.
    16. W Wang, 2003. "Modelling condition monitoring intervals: A hybrid of simulation and analytical approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 273-282, March.
    17. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    18. Costa Quinino, Roberto da & Colin, Emerson C. & Ho, Linda Lee, 2010. "Diagnostic errors and repetitive sequential classifications in on-line process control by attributes," European Journal of Operational Research, Elsevier, vol. 201(1), pages 231-238, February.
    19. Samrout, M. & Châtelet, E. & Kouta, R. & Chebbo, N., 2009. "Optimization of maintenance policy using the proportional hazard model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 44-52.
    20. Scarf, Philip A., 1997. "On the application of mathematical models in maintenance," European Journal of Operational Research, Elsevier, vol. 99(3), pages 493-506, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:7:d:10.1057_palgrave.jors.2602185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.