IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i6d10.1057_palgrave.jors.2602621.html
   My bibliography  Save this article

Plant residual time modelling based on observed variables in oil samples

Author

Listed:
  • W Wang

    (University of Salford
    Harbin Institute of Technology)

  • B Hussin

    (Universiti Teknikal Malaysia)

Abstract

This paper presents a model and methodology for estimating the residual time of a plant item. This plant item can be an engine or any complex technical system monitored by a regularly spaced oil analysis programme. Typically in the oil samples taken, two groups of observed variables are available, namely, metal concentrations and variables related to the condition of the lubricant and contaminants. We term the former as internal variables and the latter as external variables. External variables are those that may cause the change of the underlying condition of the plant item and therefore the residual time, while internal variables are those variables that only reflect the residual time but cannot change it. We modelled both variables in an oil-based monitoring case, but the principle can be generalized to other monitoring situations. The main techniques used are stochastic filtering for residual time prediction and the maximum likelihood method for parameters estimation. The model established was fitted to the real data of marine diesel engines monitored by an oil analysis programme and the results are presented.

Suggested Citation

  • W Wang & B Hussin, 2009. "Plant residual time modelling based on observed variables in oil samples," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 789-796, June.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:6:d:10.1057_palgrave.jors.2602621
    DOI: 10.1057/palgrave.jors.2602621
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602621
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P J Vlok & J L Coetzee & D Banjevic & A K S Jardine & V Makis, 2002. "Optimal component replacement decisions using vibration monitoring and the proportional-hazards model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(2), pages 193-202, February.
    2. W Wang, 2003. "Modelling condition monitoring intervals: A hybrid of simulation and analytical approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 273-282, March.
    3. Makis, Viliam & Wu, Jianmou & Gao, Yan, 2006. "An application of DPCA to oil data for CBM modeling," European Journal of Operational Research, Elsevier, vol. 174(1), pages 112-123, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
    2. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    3. Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
    4. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    5. David Vališ & Libor Žák & Ondřej Pokora, 2015. "Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data," Journal of Risk and Reliability, , vol. 229(1), pages 36-45, February.
    6. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Rui & Chen, Bingkun & Gu, Liudong, 2020. "Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    3. Kim, Michael Jong & Jiang, Rui & Makis, Viliam & Lee, Chi-Guhn, 2011. "Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure," European Journal of Operational Research, Elsevier, vol. 214(2), pages 331-339, October.
    4. Lin, Yan-Hui & Li, Yan-Fu & Zio, Enrico, 2018. "A comparison between Monte Carlo simulation and finite-volume scheme for reliability assessment of multi-state physics systems," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 1-11.
    5. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    6. W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
    7. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.
    8. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.
    9. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    10. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    11. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    12. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.
    13. Ferreira, Rodrigo J.P. & de Almeida, Adiel Teixeira & Cavalcante, Cristiano A.V., 2009. "A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 905-912.
    14. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    15. Quanjiang Yu & Pramod Bangalore & Sara Fogelström & Serik Sagitov, 2024. "Optimal Preventive Maintenance Scheduling for Wind Turbines under Condition Monitoring," Energies, MDPI, vol. 17(2), pages 1-16, January.
    16. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    17. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    18. Rasool Motahari & Yasser Saeidi Sough & Hamed Aboutorab & Morteza Saberi, 2021. "Joint optimization of maintenance and inventory policies for multi-unit systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 587-607, June.
    19. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:6:d:10.1057_palgrave.jors.2602621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.