Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9868.2006.00538.x
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
- Bartolucci, Francesco & Nigro, Valentina, 2007.
"Maximum likelihood estimation of an extended latent Markov model for clustered binary panel data,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3470-3483, April.
- Francesco Bartolucci & Valentina Nigro, 2007. "Maximum likelihood estimation of an extended latent markov model for clustered binary panel data," CEIS Research Paper 96, Tor Vergata University, CEIS.
- Mauro Laudicella & Paolo Li Donni, 2022.
"The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 521-536, April.
- Laudicella, Mauro & Li Donni, Paolo, 2021. "The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach," DaCHE discussion papers 2021:1, University of Southern Denmark, Dache - Danish Centre for Health Economics.
- Francesco Bartolucci & Fulvia Pennoni & Brian Francis, 2007. "A latent Markov model for detecting patterns of criminal activity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 115-132, January.
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014.
"Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
- Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
- Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2019.
"Uncontrolled diabetes and health care utilisation: A bivariate latent Markov model approach,"
Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1262-1276, November.
- Gill, J.; & Li Donni, P.; & Zucchelli, E.;, 2018. "Uncontrolled diabetes and health care utilisation: a bivariate Latent Markov model approach," Health, Econometrics and Data Group (HEDG) Working Papers 18/28, HEDG, c/o Department of Economics, University of York.
- Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2018. "Uncontrolled diabetes and health care utilisation: a bivariate Latent Markov model approach," UB School of Economics Working Papers 2018/382, University of Barcelona School of Economics.
- S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
- Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
- Michele Bavaro & Federico Tullio, 2023. "Intergenerational mobility measurement with latent transition matrices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 25-45, March.
- Bartolucci, Francesco & Lupparelli, Monia, 2012. "Nested hidden Markov chains for modeling dynamic unobserved heterogeneity in multilevel longitudinal data," MPRA Paper 40588, University Library of Munich, Germany.
- Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
- Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
- Mansnerus, Erika, 2008. "What happens to facts after their construction?: characteristics and functional roles of facts in the dissemination of knowledge across modelling communities," Economic History Working Papers 22504, London School of Economics and Political Science, Department of Economic History.
- Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
- Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
- Li Donni, Paolo, 2019. "The unobserved pattern of material hardship and health among older Americans," Journal of Health Economics, Elsevier, vol. 65(C), pages 31-42.
- Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
- Geir D. Berentsen & Jan Bulla & Antonello Maruotti & Bård Støve, 2022. "Modelling clusters of corporate defaults: Regime‐switching models significantly reduce the contagion source," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 698-722, June.
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016.
"Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies,"
Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
- Bartolucci, Francesco & Pennoni, Fulvia & Vittadini, Giorgio, 2015. "Causal latent Markov model for the comparison of multiple treatments in observational longitudinal studies," MPRA Paper 66492, University Library of Munich, Germany.
- Kelava, Augustin & Kohler, Michael & Krzyżak, Adam & Schaffland, Tim Fabian, 2017. "Nonparametric estimation of a latent variable model," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 112-134.
- Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
- Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:2:p:155-178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.