IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v34y2009i4p491-521.html
   My bibliography  Save this article

Bayesian Network Models for Local Dependence Among Observable Outcome Variables

Author

Listed:
  • Russell G. Almond
  • Joris Mulder
  • Lisa A. Hemat
  • Duanli Yan

Abstract

Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context—ignores dependence among observables; (b) compensatory context—introduces a latent variable, context, to model task-specific knowledge and use a compensatory model to combine this with the relevant proficiencies; (c) inhibitor context—introduces a latent variable, context, to model task-specific knowledge and use an inhibitor (threshold) model to combine this with the relevant proficiencies; (d) compensatory cascading—models each observable as dependent on the previous one in sequence. This article explores the four design patterns through experiments with simulated and real data. When the proficiency variable is categorical, a simple Mantel-Haenszel procedure can test for local dependence. Although local dependence can cause problems in the calibration, if the models based on these design patterns are successfully calibrated to data, all the design patterns appear to provide very similar inferences about the students. Based on these experiments, the simpler no context design pattern appears more stable than the compensatory context model, while not significantly affecting the classification accuracy of the assessment. The cascading design pattern seems to pick up on dependencies missed by other models and should be explored with further research.

Suggested Citation

  • Russell G. Almond & Joris Mulder & Lisa A. Hemat & Duanli Yan, 2009. "Bayesian Network Models for Local Dependence Among Observable Outcome Variables," Journal of Educational and Behavioral Statistics, , vol. 34(4), pages 491-521, December.
  • Handle: RePEc:sae:jedbes:v:34:y:2009:i:4:p:491-521
    DOI: 10.3102/1076998609332751
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998609332751
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998609332751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Mislevy, 1994. "Evidence and inference in educational assessment," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 439-483, December.
    2. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Younyoung Choi & Young Il Cho, 2020. "Learning Analytics Using Social Network Analysis and Bayesian Network Analysis in Sustainable Computer-Based Formative Assessment System," Sustainability, MDPI, vol. 12(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quinn N. Lathrop & Ying Cheng, 2017. "Item Cloning Variation and the Impact on the Parameters of Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 245-263, March.
    2. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    3. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    4. Doyeob Kim & Sung-Ho Kim, 2020. "A Short Note on Improvement of Agreement Rate," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 550-557, October.
    5. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
    6. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    7. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    8. Daniel Segall, 2001. "General ability measurement: An application of multidimensional item response theory," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 79-97, March.
    9. repec:jss:jstsof:36:c01 is not listed on IDEAS
    10. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    11. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    12. Johan Braeken & Francis Tuerlinckx & Paul Boeck, 2007. "Copula Functions for Residual Dependency," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 393-411, September.
    13. Mario Quaranta, 2018. "The Meaning of Democracy to Citizens Across European Countries and the Factors Involved," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 859-880, April.
    14. Yuri Goegebeur & Paul Boeck & James Wollack & Allan Cohen, 2008. "A Speeded Item Response Model with Gradual Process Change," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 65-87, March.
    15. Kim, Seong-Ho & Kim, Sung-Ho, 2006. "A divide-and-conquer approach in applying EM for large recursive models with incomplete categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 611-641, February.
    16. Joachim Büschken & Thomas Otter & Greg M. Allenby, 2013. "The Dimensionality of Customer Satisfaction Survey Responses and Implications for Driver Analysis," Marketing Science, INFORMS, vol. 32(4), pages 533-553, July.
    17. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    18. Joachim Büschken & Ulf Böckenholt & Thomas Otter & Daniel Stengel, 2022. "Better Information From Survey Data: Filtering Out State Dependence Using Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 620-665, June.
    19. Gülden Kaya Uyanik & Levent Ertuna, 2022. "Examination of Testlet Effect in Open-Ended Items," SAGE Open, , vol. 12(1), pages 21582440221, February.
    20. Sung-Ho Kim & Geonyoup Noh, 2013. "Model Similarity and Rank-Order Based Classification of Bayesian Networks," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 428-452, October.
    21. Hong Jiao, 2011. "J.-P. FOX (2010) Bayesian Item Response Modeling: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 360-362, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:34:y:2009:i:4:p:491-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.