IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i4p1550147720916405.html
   My bibliography  Save this article

Near-field sound source localization using principal component analysis–multi-output support vector regression

Author

Listed:
  • Lanmei Wang
  • Yao Wang
  • Guibao Wang
  • Jianke Jia

Abstract

In this article, principal component analysis method, which is applied to image compression and feature extraction, is introduced into the dimension reduction of input characteristic variable of support vector regression, and a method of joint estimation of near-field angle and range based on principal component analysis dimension reduction is proposed. Signal-to-noise ratio and calculation amount are the decisive factors affecting the performance of the algorithm. Principal component analysis is used to fuse the main characteristics of training data and discard redundant information, the signal-to-noise ratio is improved, and the calculation amount is reduced accordingly. Similarly, support vector regression is used to model the signal, and the upper triangular elements of the signal covariance matrix are usually used as input features. Since the covariance matrix has more upper triangular elements, training it as a feature input will affect the training speed to some extent. Principal component analysis is used to reduce the dimensionality of the upper triangular element of the covariance matrix of the known signal, and it is used as the input feature of the multi-output support vector regression machine to construct the near-field parameter estimation model, and the parameter estimation of unknown signal is herein obtained. Simulation results show that this method has high estimation accuracy and training speed, and has strong adaptability at low signal-to-noise ratio, and the performance is better than that of the back-propagation neural network algorithm and the two-step multiple signal classification algorithm.

Suggested Citation

  • Lanmei Wang & Yao Wang & Guibao Wang & Jianke Jia, 2020. "Near-field sound source localization using principal component analysis–multi-output support vector regression," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:4:p:1550147720916405
    DOI: 10.1177/1550147720916405
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720916405
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720916405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    2. Zaji, Amir Hossein & Bonakdari, Hossein & Khodashenas, Saeed Reza & Shamshirband, Shahaboddin, 2016. "Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 14-19.
    3. Kamil Kashif & Robert 'Slepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Papers 2406.18206, arXiv.org.
    4. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    5. Mojtaba Sedighi & Hossein Jahangirnia & Mohsen Gharakhani & Saeed Farahani Fard, 2019. "A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine," Data, MDPI, vol. 4(2), pages 1-28, May.
    6. Ha, Youngmin & Zhang, Hai, 2019. "Fast multi-output relevance vector regression," Economic Modelling, Elsevier, vol. 81(C), pages 217-230.
    7. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    8. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    9. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    10. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    11. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    12. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    13. Wang, Zicheng & Gao, Ruobin & Wang, Piao & Chen, Huayou, 2023. "A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    14. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    16. M. A. Ghorbani & R. Khatibi & V. Karimi & Zaher Mundher Yaseen & M. Zounemat-Kermani, 2018. "Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4201-4215, October.
    17. Süleyman Bilgin Kılıç & Semin Paksoy & Tolga Genç, 2014. "Forecasting the Direction of BIST 100 Returns with Artificial Neural Network Models," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 4(3), pages 759-759.
    18. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    19. Mingyu Xu & Xin Lai & Yuying Zhang & Zongjun Li & Bohan Ouyang & Jingmiao Shen & Shiming Deng, 2024. "An Integrated Hog Supply Forecasting Framework Incorporating the Time-Lagged Piglet Feature: Sustainable Insights from the Hog Industry in China," Sustainability, MDPI, vol. 16(19), pages 1-24, September.
    20. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:4:p:1550147720916405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.