IDEAS home Printed from https://ideas.repec.org/a/ers/ijfirm/v4y2014i3p759.html
   My bibliography  Save this article

Forecasting the Direction of BIST 100 Returns with Artificial Neural Network Models

Author

Listed:
  • Süleyman Bilgin Kılıç
  • Semin Paksoy
  • Tolga Genç

Abstract

In this paper, Artificial Neural Networks (ANN) models are used to forecast the direction of Borsa Istanbul 100 (BIST100) index returns. Weekly time-lagged values of exchange rate returns, gold price returns and interest rate returns are used as inputs to ANN models in the training process. Results of the study showed that BIST100 index returns follow a specific pattern in time. Estimated ANN models provide valuable information to the investors and that BIST100 stock market is not fully informational efficient.

Suggested Citation

  • Süleyman Bilgin Kılıç & Semin Paksoy & Tolga Genç, 2014. "Forecasting the Direction of BIST 100 Returns with Artificial Neural Network Models," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 4(3), pages 759-759.
  • Handle: RePEc:ers:ijfirm:v:4:y:2014:i:3:p:759
    as

    Download full text from publisher

    File URL: https://journalfirm.com/journal/105/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panda, Chakradhara & Narasimhan, V., 2007. "Forecasting exchange rate better with artificial neural network," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 227-236.
    2. Magdalena Daniela NEMES & Alexandru BUTOI, 2013. "Data Mining on Romanian Stock Market Using Neural Networks for Price Prediction," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 17(3), pages 125-136.
    3. Jones, Charles M & Kaul, Gautam, 1996. "Oil and the Stock Markets," Journal of Finance, American Finance Association, vol. 51(2), pages 463-491, June.
    4. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    5. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    6. Umstead, David A, 1977. "Forecasting Stock Market Prices," Journal of Finance, American Finance Association, vol. 32(2), pages 427-441, May.
    7. Siddhivinayak Kulkarni & Imad Haidar, 2009. "Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices," Papers 0906.4838, arXiv.org.
    8. Brown, Stephen J. & Otsuki, Toshiyuki, 1993. "Risk premia in Pacific-Basin capital markets," Pacific-Basin Finance Journal, Elsevier, vol. 1(3), pages 235-261, September.
    9. Morelli, David, 2002. "The relationship between conditional stock market volatility and conditional macroeconomic volatility: Empirical evidence based on UK data," International Review of Financial Analysis, Elsevier, vol. 11(1), pages 101-110.
    10. Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jammazi, Rania, 2012. "Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach," Energy, Elsevier, vol. 37(1), pages 430-454.
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2014. "Firm return volatility and economic gains: The role of oil prices," Economic Modelling, Elsevier, vol. 38(C), pages 142-151.
    4. Burcu Kiran, 2011. "Fractional Cointegration Relationship between Oil Prices and Stock Markets: An Empirical Analysis from G7 Countries," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 177-189.
    5. Mongi Arfaoui & Aymen Ben Rejeb, 2017. "Oil, gold, US dollar and stock market interdependencies: a global analytical insight," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 26(3), pages 278-293, October.
    6. Wu, Kai & Zhu, Jingran & Xu, Mingli & Yang, Lu, 2020. "Can crude oil drive the co-movement in the international stock market? Evidence from partial wavelet coherence analysis," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    7. Christian Urom & Gideon Ndubuisi & Jude Ozor, 2021. "Economic activity, and financial and commodity markets’ shocks: An analysis of implied volatility indexes," International Economics, CEPII research center, issue 165, pages 51-66.
    8. Jinjarak, Yothin, 2014. "Equity prices and financial globalization," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 49-57.
    9. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    10. Awerbuch, Shimon & Sauter, Raphael, 2006. "Exploiting the oil-GDP effect to support renewables deployment," Energy Policy, Elsevier, vol. 34(17), pages 2805-2819, November.
    11. Hang Zhang & Evangelos Giouvris, 2023. "What Is the Effect of Oil and Gas Markets (Spot/Futures) on Herding in BRICS? Recent Evidence (2007–2022)," JRFM, MDPI, vol. 16(11), pages 1-41, October.
    12. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2022. "Spillovers and diversification benefits between oil futures and ASEAN stock markets," Resources Policy, Elsevier, vol. 79(C).
    13. Ahmed, Maruf Yakubu & Sarkodie, Samuel Asumadu, 2021. "Counterfactual shock in energy commodities affects stock market dynamics: Evidence from the United States," Resources Policy, Elsevier, vol. 72(C).
    14. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Using Artificial Neural Networks to Support the Decision-Making Process of Buying Call Options Considering Risk Appetite," Energies, MDPI, vol. 14(24), pages 1-24, December.
    15. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2012. "Oil prices, exchange rates and emerging stock markets," Energy Economics, Elsevier, vol. 34(1), pages 227-240.
    16. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    17. repec:ipg:wpaper:2014-442 is not listed on IDEAS
    18. Yuan, Di & Li, Sufang & Li, Rong & Zhang, Feipeng, 2022. "Economic policy uncertainty, oil and stock markets in BRIC: Evidence from quantiles analysis," Energy Economics, Elsevier, vol. 110(C).
    19. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    20. Zaji, Amir Hossein & Bonakdari, Hossein & Khodashenas, Saeed Reza & Shamshirband, Shahaboddin, 2016. "Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 14-19.
    21. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:ijfirm:v:4:y:2014:i:3:p:759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://journalfirm.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.