Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-018-2038-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739, July.
- Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
- Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khabat Khosravi & Ali Golkarian & John P. Tiefenbacher, 2022. "Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 699-716, January.
- Vijendra Kumar & Naresh Kedam & Kul Vaibhav Sharma & Khaled Mohamed Khedher & Ayed Eid Alluqmani, 2023. "A Comparison of Machine Learning Models for Predicting Rainfall in Urban Metropolitan Cities," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
- Mehdi Jamei & Mumtaz Ali & Anurag Malik & Ramendra Prasad & Shahab Abdulla & Zaher Mundher Yaseen, 2022. "Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4637-4676, September.
- Subbarayan Saravanan & Nagireddy Masthan Reddy & Quoc Bao Pham & Abdullah Alodah & Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi, 2023. "Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
- Jin-Cheng Fu & Hsiao-Yun Huang & Jiun-Huei Jang & Pei-Hsun Huang, 2019. "River Stage Forecasting Using Multiple Additive Regression Trees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4491-4507, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
- Plakandaras, Vasilios & Gupta, Rangan & Wohar, Mark E., 2017.
"The depreciation of the pound post-Brexit: Could it have been predicted?,"
Finance Research Letters, Elsevier, vol. 21(C), pages 206-213.
- Vasilios Plakandaras & Rangan Gupta & Mark E. Wohar, 2016. "The Depreciation of the Pound Post-Brexit: Could it have been Predicted?," Working Papers 201670, University of Pretoria, Department of Economics.
- Plakandaras, Vasilios & Gogas, Periklis & Papadimitriou, Theophilos & Gupta, Rangan, 2019. "A re-evaluation of the term spread as a leading indicator," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 476-492.
- Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou & Rangan Gupta, 2016. "The Term Premium as a Leading Macroeconomic Indicator," Working Papers 201613, University of Pretoria, Department of Economics.
- repec:ipg:wpaper:2014-473 is not listed on IDEAS
- Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015.
"Forecasting the U.S. real house price index,"
Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
- Vasilios Plakandaras & Rangan Gupta & Periklis Gogas & Theophilos Papadimitriou, 2014. "Forecasting the U.S. Real House Price Index," Working Papers 201418, University of Pretoria, Department of Economics.
- Vasilios Plakandaras & Rangan Gupta & Periklis Gogas & Theophilos Papadimitriou, 2017. "Forecasting the U.S. Real House Price Index," Papers 1707.04868, arXiv.org.
- Plakandaras, Vasilios & Gupta, Rangan & Papadimitriou, Theophilos & Gogas, Periklis, 2014. "Forecasting the U.S. Real House Price Index," DUTH Research Papers in Economics 10-2014, Democritus University of Thrace, Department of Economics.
- Vasilios Plakandaras & Rangan Gupta & Periklis Gogas & Theophilos Papadimitriou, 2014. "Forecasting the U.S. Real House Price Index," Working Paper series 30_14, Rimini Centre for Economic Analysis.
- Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
- Theophilos Papadimitriou & Periklis Gogas & Vasilios Plakandaras, 2016. "Testing Exchange Rate Models in a Small Open Economy: an SVR Approach," Bulletin of Applied Economics, Risk Market Journals, vol. 3(2), pages 9-29.
- Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
- Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
- Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016.
"An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
- Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi-Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Working Papers 2016-004, Department of Research, Ipag Business School.
- Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
- Hendry, David F. & Clements, Michael P., 2003.
"Economic forecasting: some lessons from recent research,"
Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
- David Hendry & Michael P. Clements, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Papers 2002-W11, Economics Group, Nuffield College, University of Oxford.
- Clements, Michael P. & Hendry, David F., 2001. "Economic forecasting: some lessons from recent research," Working Paper Series 82, European Central Bank.
- Hendry, David F & Michael P. Clements, 2002. "Economic Forecasting: Some Lessons from Recent Research," Royal Economic Society Annual Conference 2002 99, Royal Economic Society.
- David Hendry & Michael P. Clements & Department of Economics & University of Warwick, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Series Working Papers 78, University of Oxford, Department of Economics.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Fernando M. Duarte & Carlo Rosa, 2015.
"The equity risk premium: a review of models,"
Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
- Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Staff Reports 714, Federal Reserve Bank of New York.
- Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Technology.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Zaji, Amir Hossein & Bonakdari, Hossein & Khodashenas, Saeed Reza & Shamshirband, Shahaboddin, 2016. "Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 14-19.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
More about this item
Keywords
Multiple Models (MM); Two-level MM strategy; Monthly river flow records; Scatter of error residuals; Distressed Lake Urmia;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2038-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.