Fast multi-output relevance vector regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econmod.2019.04.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kai Biehl & Franziska Disslbacher & Michael Ertl & Georg Feigl & Julia Hofmann & Pia Kranawetter & Markus Marterbauer & Michael Mesch & Reinhold Russinger & Matthias Schnetzer & Tobias Schweitzer & Th, 2019. "Neue Legislaturperiode: Weichen für wohlstandsorientierte Budgetpolitik stellen," Wirtschaft und Gesellschaft - WuG, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik, vol. 45(4), pages 459-470.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Zaji, Amir Hossein & Bonakdari, Hossein & Khodashenas, Saeed Reza & Shamshirband, Shahaboddin, 2016. "Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 14-19.
- Lanmei Wang & Yao Wang & Guibao Wang & Jianke Jia, 2020. "Near-field sound source localization using principal component analysis–multi-output support vector regression," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.
- Kamil Kashif & Robert 'Slepaczuk, 2024.
"LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies,"
Papers
2406.18206, arXiv.org.
- Kamil Kashif & Robert Ślepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Working Papers 2024-07, Faculty of Economic Sciences, University of Warsaw.
- Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
- Mojtaba Sedighi & Hossein Jahangirnia & Mohsen Gharakhani & Saeed Farahani Fard, 2019. "A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine," Data, MDPI, vol. 4(2), pages 1-28, May.
- Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
- Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
- Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
- Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
- Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
- Wang, Zicheng & Gao, Ruobin & Wang, Piao & Chen, Huayou, 2023. "A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
- González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
- M. A. Ghorbani & R. Khatibi & V. Karimi & Zaher Mundher Yaseen & M. Zounemat-Kermani, 2018. "Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4201-4215, October.
- Süleyman Bilgin Kılıç & Semin Paksoy & Tolga Genç, 2014. "Forecasting the Direction of BIST 100 Returns with Artificial Neural Network Models," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 4(3), pages 759-759.
- Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
- Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
- Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
More about this item
Keywords
Relevance vector regression; Machine learning; Sparse Bayesian learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:81:y:2019:i:c:p:217-230. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.