IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v274y2016icp14-19.html
   My bibliography  Save this article

Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient

Author

Listed:
  • Zaji, Amir Hossein
  • Bonakdari, Hossein
  • Khodashenas, Saeed Reza
  • Shamshirband, Shahaboddin

Abstract

A principal step in designing dividing hydraulic structures entails determining the side weir discharge coefficient. In this study, Firefly optimization-based Support Vector Regression (SVR-FF) is introduced and examined in terms of predicting the discharge coefficient of a modified labyrinth side weir. Ten non-dimensional parameters of various geometrical and hydraulic conditions are defined as the input parameters for the SVR-FF and the side weir discharge coefficient is defined as the output. Improvements in SVR prediction accuracy are determined by comparing SVR-FF with the traditional SVR model. The results indicate that the SVR-FF model with RMSE of 0.035 is about 10% more accurate than SVR with RMSE of 0.039. Thus, combining the Firefly optimization algorithm with SVR increases the prediction model performance.

Suggested Citation

  • Zaji, Amir Hossein & Bonakdari, Hossein & Khodashenas, Saeed Reza & Shamshirband, Shahaboddin, 2016. "Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir's discharge coefficient," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 14-19.
  • Handle: RePEc:eee:apmaco:v:274:y:2016:i:c:p:14-19
    DOI: 10.1016/j.amc.2015.10.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315014216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.10.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meysam Nouri & Parveen Sihag & Ozgur Kisi & Mohammad Hemmati & Shamsuddin Shahid & Rana Muhammad Adnan, 2022. "Prediction of the Discharge Coefficient in Compound Broad-Crested-Weir Gate by Supervised Data Mining Techniques," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    2. Bonakdari, Hossein & Khozani, Zohreh Sheikh & Zaji, Amir Hossein & Asadpour, Navid, 2018. "Evaluating the apparent shear stress in prismatic compound channels using the Genetic Algorithm based on Multi-Layer Perceptron: A comparative study," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 400-411.
    3. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    2. Lanmei Wang & Yao Wang & Guibao Wang & Jianke Jia, 2020. "Near-field sound source localization using principal component analysis–multi-output support vector regression," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.
    3. Kamil Kashif & Robert 'Slepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Papers 2406.18206, arXiv.org.
    4. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    5. Mojtaba Sedighi & Hossein Jahangirnia & Mohsen Gharakhani & Saeed Farahani Fard, 2019. "A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine," Data, MDPI, vol. 4(2), pages 1-28, May.
    6. Ha, Youngmin & Zhang, Hai, 2019. "Fast multi-output relevance vector regression," Economic Modelling, Elsevier, vol. 81(C), pages 217-230.
    7. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    8. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    9. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    10. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    11. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    12. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    13. Wang, Zicheng & Gao, Ruobin & Wang, Piao & Chen, Huayou, 2023. "A new perspective on air quality index time series forecasting: A ternary interval decomposition ensemble learning paradigm," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    14. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    16. M. A. Ghorbani & R. Khatibi & V. Karimi & Zaher Mundher Yaseen & M. Zounemat-Kermani, 2018. "Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4201-4215, October.
    17. Süleyman Bilgin Kılıç & Semin Paksoy & Tolga Genç, 2014. "Forecasting the Direction of BIST 100 Returns with Artificial Neural Network Models," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 4(3), pages 759-759.
    18. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    19. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    20. Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:274:y:2016:i:c:p:14-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.