IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i7p1550147719865876.html
   My bibliography  Save this article

A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion

Author

Listed:
  • Liguo Fei
  • Jun Xia
  • Yuqiang Feng
  • Luning Liu

Abstract

Multi-sensor information fusion occurs in a vast variety of applications, including medical diagnosis, automatic drive, speech recognition, and so on. Often these problems can be modeled by Dempster–Shafer theory. In Dempster–Shafer theory, the most primary processing unit is the basic probability assignment, which is a description of objective information in the real world. How to make this description more effective is a vital but open issue. A novel basic probability assignment generation model is proposed in this article whose objective is to provide perspective with respect to how basic probability assignment can be determined based on learning algorithms. First, the basic probability assignment generation model is constructed based on clustering idea using K-means method, which is employed to determine basic probability assignment with the proposed basic probability assignment generation method. Moreover, the proposed basic probability assignment generation method is extended by K–nearest neighbor (K-NN) algorithm. The detailed implementation of the proposed method is demonstrated by several numerical examples. As an extension, a classifier called KKC is constructed according to the developed approach, and its classification effect is compared with several famous classification algorithms. Experiments manifest desirable results with regard to classification accuracy, which illustrates the applicability of the proposed method to determine basic probability assignment.

Suggested Citation

  • Liguo Fei & Jun Xia & Yuqiang Feng & Luning Liu, 2019. "A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719865876
    DOI: 10.1177/1550147719865876
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719865876
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719865876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yutong Song & Yong Deng, 2019. "A new method to measure the divergence in evidential sensor data fusion," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    3. Deng, Xinyang & Jiang, Wen & Wang, Zhen, 2019. "Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory solution," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 101-112.
    4. Xiaozhuan Gao & Yong Deng, 2019. "The generalization negation of probability distribution and its application in target recognition based on sensor fusion," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    5. Bowen Qin & Fuyuan Xiao, 2019. "An improved method to determine basic probability assignment with interval number and its application in classification," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
    6. Huang, Zhiming & Yang, Lin & Jiang, Wen, 2019. "Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 417-428.
    7. Jian Wang & Kuoyuan Qiao & Zhiyong Zhang, 2018. "Trust evaluation based on evidence theory in online social networks," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477187, October.
    8. Fu, Chao & Chang, Wenjun & Xue, Min & Yang, Shanlin, 2019. "Multiple criteria group decision making with belief distributions and distributed preference relations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 623-633.
    9. Wen Jiang & Jun Zhan & Deyun Zhou & Xin Li, 2016. "A Method to Determine Generalized Basic Probability Assignment in the Open World," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zhang & Wen Jiang & Xinyang Deng, 2019. "Fault diagnosis method based on time domain weighted data aggregation and information fusion," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    2. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    3. Shang Gao & Yong Deng, 2019. "An evidential evaluation of nuclear safeguards," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    4. Wen Jiang & Zeyu Ma & Xinyang Deng, 2019. "An attack-defense game based reliability analysis approach for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    5. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    7. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    8. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    9. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    10. Chao Fu & Wenjun Chang, 2024. "A Markov Chain-Based Group Consensus Method with Unknown Parameters," Group Decision and Negotiation, Springer, vol. 33(5), pages 1019-1048, October.
    11. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    12. Shijun Xu & Yi Hou & Xinpu Deng & Peibo Chen & Kewei Ouyang & Ye Zhang, 2021. "A novel divergence measure in Dempster–Shafer evidence theory based on pignistic probability transform and its application in multi-sensor data fusion," International Journal of Distributed Sensor Networks, , vol. 17(7), pages 15501477211, July.
    13. Michal Bernardelli & Zbigniew Korzeb & Pawel Niedziolka, 2021. "The banking sector as the absorber of the COVID-19 crisis’ economic consequences: perception of WSE investors," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 335-374, June.
    14. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    15. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Carlos Fernández-Hernández & Carmelo J. León & Jorge E. Araña & Flora Díaz-Pére, 2016. "Market segmentation, activities and environmental behaviour in rural tourism," Tourism Economics, , vol. 22(5), pages 1033-1054, October.
    17. Eduardo Fernández & Claudia Gómez-Santillán & Nelson Rangel-Valdez & Laura Cruz-Reyes, 2022. "Group Multi-Objective Optimization Under Imprecision and Uncertainty Using a Novel Interval Outranking Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 945-994, October.
    18. Hafid Kadi & Mohammed Rebbah & Boudjelal Meftah & Olivier Lézoray, 2021. "A Data Representation Model for Personalized Medicine," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-25, October.
    19. Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    20. Huimin Xiao & Shouwen Wu & Chunsheng Cui, 2022. "The Research on Consistency Checking and Improvement of Probabilistic Linguistic Preference Relation Based on Similarity Measure and Minimum Adjustment Model," Mathematics, MDPI, vol. 10(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719865876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.