IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i10p1550147718794629.html
   My bibliography  Save this article

Trust evaluation based on evidence theory in online social networks

Author

Listed:
  • Jian Wang
  • Kuoyuan Qiao
  • Zhiyong Zhang

Abstract

Trust is an important criterion for access control in the field of online social networks privacy preservation. In the present methods, the subjectivity and individualization of the trust is ignored and a fixed model is built for all the users. In fact, different users probably take different trust features into their considerations when making trust decisions. Besides, in the present schemes, only users’ static features are mapped into trust values, without the risk of privacy leakage. In this article, the features that each user cares about when making trust decisions are mined by machine learning to be User-Will. The privacy leakage risk of the evaluated user is estimated through information flow predicting. Then the User-Will and the privacy leakage risk are all mapped into trust evidence to be combined by an improved evidence combination rule of the evidence theory. In the end, several typical methods and the proposed scheme are implemented to compare the performance on dataset Epinions. Our scheme is verified to be more advanced than the others by comparing the F-Score and the Mean Error of the trust evaluation results.

Suggested Citation

  • Jian Wang & Kuoyuan Qiao & Zhiyong Zhang, 2018. "Trust evaluation based on evidence theory in online social networks," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477187, October.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718794629
    DOI: 10.1177/1550147718794629
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718794629
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718794629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liguo Fei & Jun Xia & Yuqiang Feng & Luning Liu, 2019. "A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:10:p:1550147718794629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.