IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i1p1550147718820524.html
   My bibliography  Save this article

An improved method to determine basic probability assignment with interval number and its application in classification

Author

Listed:
  • Bowen Qin
  • Fuyuan Xiao

Abstract

Due to its efficiency to handle uncertain information, Dempster–Shafer evidence theory has become the most important tool in many information fusion systems. However, how to determine basic probability assignment, which is the first step in evidence theory, is still an open issue. In this article, a new method integrating interval number theory and k -means++ cluster method is proposed to determine basic probability assignment. At first, k -means++ clustering method is used to calculate lower and upper bound values of interval number with training data. Then, the differentiation degree based on distance and similarity of interval number between the test sample and constructed models are defined to generate basic probability assignment. Finally, Dempster’s combination rule is used to combine multiple basic probability assignments to get the final basic probability assignment. The experiments on Iris data set that is widely used in classification problem illustrated that the proposed method is effective in determining basic probability assignment and classification problem, and the proposed method shows more accurate results in which the classification accuracy reaches 96.7%.

Suggested Citation

  • Bowen Qin & Fuyuan Xiao, 2019. "An improved method to determine basic probability assignment with interval number and its application in classification," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:1:p:1550147718820524
    DOI: 10.1177/1550147718820524
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718820524
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718820524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frikha, Ahmed & Moalla, Hela, 2015. "Analytic hierarchy process for multi-sensor data fusion based on belief function theory," European Journal of Operational Research, Elsevier, vol. 241(1), pages 133-147.
    2. Kang, Bingyi & Chhipi-Shrestha, Gyan & Deng, Yong & Hewage, Kasun & Sadiq, Rehan, 2018. "Stable strategies analysis based on the utility of Z-number in the evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 202-217.
    3. Wen Jiang & Boya Wei, 2018. "Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(3), pages 582-594, February.
    4. Wen Jiang & Boya Wei & Xiyun Qin & Jun Zhan & Yongchuan Tang, 2016. "Sensor Data Fusion Based on a New Conflict Measure," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, August.
    5. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    6. Beynon, Malcolm & Curry, Bruce & Morgan, Peter, 2000. "The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling," Omega, Elsevier, vol. 28(1), pages 37-50, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liguo Fei & Jun Xia & Yuqiang Feng & Luning Liu, 2019. "A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    2. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling & Chin, Kwai-Sang, 2006. "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees," European Journal of Operational Research, Elsevier, vol. 175(1), pages 35-66, November.
    4. Kangas, Annika S. & Kangas, Jyrki, 2004. "Probability, possibility and evidence: approaches to consider risk and uncertainty in forestry decision analysis," Forest Policy and Economics, Elsevier, vol. 6(2), pages 169-188, March.
    5. Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
    6. Yang, J.B. & Wang, Y.M. & Xu, D.L. & Chin, K.S., 2006. "The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties," European Journal of Operational Research, Elsevier, vol. 171(1), pages 309-343, May.
    7. Justin Moskolaï Ngossaha & Raymond Houé Ngouna & Bernard Archimède & Mihaela-Hermina Negulescu & Alexandru-Ionut Petrişor, 2024. "Toward Sustainable Urban Mobility: A Multidimensional Ontology-Based Framework for Assessment and Consensus Decision-Making Using DS-AHP," Sustainability, MDPI, vol. 16(11), pages 1-22, May.
    8. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    9. Emanuele Salerno, 2020. "Identifying Value-Increasing Actions for Cultural Heritage Assets through Sensitivity Analysis of Multicriteria Evaluation Results," Sustainability, MDPI, vol. 12(21), pages 1-13, November.
    10. S. Nodoust & A. Mirzazadeh & G.-W. Weber, 2020. "An evidential reasoning approach for production modeling with deteriorating and ameliorating items," Operational Research, Springer, vol. 20(1), pages 1-19, March.
    11. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    12. Chongxin Huang & Dong Yue & Song Deng & Jun Xie, 2017. "Optimal Scheduling of Microgrid with Multiple Distributed Resources Using Interval Optimization," Energies, MDPI, vol. 10(3), pages 1-23, March.
    13. Huang, Min & Qian, Xiaohu & Fang, Shu-Cherng & Wang, Xingwei, 2016. "Winner determination for risk aversion buyers in multi-attribute reverse auction," Omega, Elsevier, vol. 59(PB), pages 184-200.
    14. Dapeng Wang & Cong Zhang & Wanqing Jia & Qian Liu & Long Cheng & Huaizhi Yang & Yufeng Luo & Na Kuang, 2022. "A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation," Energies, MDPI, vol. 15(20), pages 1-19, October.
    15. Zhang, Yifan & Shu, Gang & Li, Ya, 2017. "Strategy-updating depending on local environment enhances cooperation in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 224-232.
    16. Lei Chen & Ling Diao & Jun Sang, 2019. "A novel weighted evidence combination rule based on improved entropy function with a diagnosis application," International Journal of Distributed Sensor Networks, , vol. 15(1), pages 15501477188, January.
    17. Abhijit Baidya & Uttam Kumar Bera & Manoranjan Maiti, 2016. "The grey linear programming approach and its application to multi-objective multi-stage solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 500-522, September.
    18. Banafsheh Nematollahi & Mohammad Reza Nikoo & Amir H. Gandomi & Nasser Talebbeydokhti & Gholam Reza Rakhshandehroo, 2022. "A Multi-criteria Decision-making Optimization Model for Flood Management in Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4933-4949, October.
    19. Deng, Xinyang & Jiang, Wen & Wang, Zhen, 2020. "An Information Source Selection Model Based on Evolutionary Game Theory," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    20. Beynon, Malcolm J., 2005. "Understanding local ignorance and non-specificity within the DS/AHP method of multi-criteria decision making," European Journal of Operational Research, Elsevier, vol. 163(2), pages 403-417, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:1:p:1550147718820524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.