IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i10p1550147719881116.html
   My bibliography  Save this article

Network modelling and computation of quickest path for service-level agreements using bi-objective optimization

Author

Listed:
  • Ashutosh Sharma
  • Rajiv Kumar
  • Manar Wasif Abu Talib
  • Saurabh Srivastava
  • Razi Iqbal

Abstract

This article addresses the problem related to the reliability of path after transmitting the given amount of data with the service-level agreement cooperation in the computer communication network. The links have associated with service performance factor parameter during the data transmission, and each node is associated with the requested service performance factor. In this article, first we have considered the single objective to minimize the transmission time of the quickest path problem. An algorithm for quickest path problem has been proposed for results, and furthermore, its time complexity has been shown. The problem has been extended with bi-objective optimization of the quickest path problem, which minimizes the transmission time and hybrid logarithmic reliability. An algorithm is proposed for getting the number of efficient solutions for the quickest path problem using label-correcting algorithm. The algorithms are implemented and tested on different standard benchmark network problems provided with the set of Pareto front of the results.

Suggested Citation

  • Ashutosh Sharma & Rajiv Kumar & Manar Wasif Abu Talib & Saurabh Srivastava & Razi Iqbal, 2019. "Network modelling and computation of quickest path for service-level agreements using bi-objective optimization," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719881116
    DOI: 10.1177/1550147719881116
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719881116
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719881116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2016. "The Vehicle Routing Problem with Simultaneous Pick-ups and Deliveries and Two-Dimensional Loading Constraints," European Journal of Operational Research, Elsevier, vol. 251(2), pages 369-386.
    2. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.
    3. Climaco, Joao C.N. & Pascoal, Marta M.B. & Craveirinha, Jose M.F. & Captivo, M. Eugenia V., 2007. "Internet packet routing: Application of a K-quickest path algorithm," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1045-1054, September.
    4. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    5. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    6. Michael Hart Moore, 1976. "On the Fastest Route for Convoy-Type Traffic in Flowrate-Constrained Networks," Transportation Science, INFORMS, vol. 10(2), pages 113-124, May.
    7. M. Pascoal & M. Captivo & J. Clímaco, 2007. "Computational experiments with a lazy version of a K quickest simple path ranking algorithm," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 372-382, December.
    8. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    9. Følstad, Eirik L. & Helvik, Bjarne E., 2016. "The cost for meeting SLA dependability requirements; implications for customers and providers," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 136-146.
    10. Calvete, Herminia I. & del-Pozo, Lourdes & Iranzo, José A., 2018. "Dealing with residual energy when transmitting data in energy-constrained capacitated networks," European Journal of Operational Research, Elsevier, vol. 269(2), pages 602-620.
    11. Herminia Calvete & Lourdes del-Pozo & José Iranzo, 2012. "Algorithms for the quickest path problem and the reliable quickest path problem," Computational Management Science, Springer, vol. 9(2), pages 255-272, May.
    12. McCarter, Matthew & Barker, Kash & Johansson, Jonas & Ramirez-Marquez, Jose E., 2018. "A bi-objective formulation for robust defense strategies in multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 154-161.
    13. Lin, Yi-Kuei & Chang, Ping-Chen, 2012. "Evaluate the system reliability for a manufacturing network with reworking actions," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 127-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulong Sun & Hongjuan Li & Mohammad Shabaz & Amit Sharma, 2022. "Research on building truss design based on particle swarm intelligence optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 38-48, March.
    2. Xiaogeng Ren & Chunwang Li & Xiaojun Ma & Fuxiang Chen & Haoyu Wang & Ashutosh Sharma & Gurjot Singh Gaba & Mehedi Masud, 2021. "Design of Multi-Information Fusion Based Intelligent Electrical Fire Detection System for Green Buildings," Sustainability, MDPI, vol. 13(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvete, Herminia I. & del-Pozo, Lourdes & Iranzo, José A., 2018. "Dealing with residual energy when transmitting data in energy-constrained capacitated networks," European Journal of Operational Research, Elsevier, vol. 269(2), pages 602-620.
    2. Forghani-elahabad, Majid & Mahdavi-Amiri, Nezam, 2015. "An efficient algorithm for the multi-state two separate minimal paths reliability problem with budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 472-481.
    3. Sedeño-Noda, Antonio & González-Barrera, Jonathan D., 2014. "Fast and fine quickest path algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 596-606.
    4. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    5. Mehdi Ghiyasvand & Azam Ramezanipour, 2018. "Solving the MCQP, MLT, and MMLT problems and computing weakly and strongly stable quickest paths," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(2), pages 217-230, June.
    6. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    7. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    8. Qiqian Zhang & Xiao Huang & Honghai Zhang & Chunyun He, 2023. "Research on Logistics Path Optimization for a Two-Stage Collaborative Delivery System Using Vehicles and UAVs," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    9. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    10. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    11. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    12. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    13. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    14. Vincent F. Yu & Shih-Wei Lin & Panca Jodiawan & Yu-Chi Lai, 2023. "Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    15. Snežana Tadić & Mladen Krstić & Ljubica Radovanović, 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    16. Lixin Shen & Jie Sun & Dong Yang, 2024. "Research on Path Optimization for Collaborative UAVs and Mothership Monitoring of Air Pollution from Port Vessels," Sustainability, MDPI, vol. 16(12), pages 1-33, June.
    17. Karakose, Gokhan & McGarvey, Ronald G., 2018. "Capacitated path-aggregation constraint model for arc disruption in networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 225-238.
    18. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    19. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    20. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719881116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.