IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v139y2020icp364-387.html
   My bibliography  Save this article

Drone routing with energy function: Formulation and exact algorithm

Author

Listed:
  • Cheng, Chun
  • Adulyasak, Yossiri
  • Rousseau, Louis-Martin

Abstract

Drone delivery is known as a potential contributor in improving efficiency and alleviating last-mile delivery problems. For this reason, drone routing and scheduling has become a highly active area of research in recent years. Unlike the vehicle routing problem, however, designing drones’ routes is challenging due to multiple operational characteristics including multi-trip operations, recharge planning, and energy consumption calculation. To fill some important gaps in the literature, this paper solves a multi-trip drone routing problem, where drones’ energy consumption is modeled as a nonlinear function of payload and travel distance. We propose adding logical cuts and subgradient cuts in the solution process to tackle the more complex nonlinear (convex) energy function, instead of using the linear approximation method as in the literature, which can fail to detect infeasible routes due to excess energy consumption. We use a 2-index formulation to model the problem and develop a branch-and-cut algorithm for the formulation. Benchmark instances are first generated for this problem. Numerical tests indicate that even though the original model is nonlinear, the proposed approach can solve large problems to optimality. In addition, in multiple instances, the linear approximation model yields routes that under the nonlinear energy model would be energy infeasible. Use of a linear approximation for drone energy leads to differences in energy consumption of about 9% on average compared to the nonlinear energy model.

Suggested Citation

  • Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
  • Handle: RePEc:eee:transb:v:139:y:2020:i:c:p:364-387
    DOI: 10.1016/j.trb.2020.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152030360X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    2. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    3. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    4. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    5. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    6. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    7. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    8. Aristide Mingozzi & Roberto Roberti & Paolo Toth, 2013. "An Exact Algorithm for the Multitrip Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 193-207, May.
    9. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    10. Macedo, Rita & Alves, Cláudio & Valério de Carvalho, J.M. & Clautiaux, François & Hanafi, Saïd, 2011. "Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model," European Journal of Operational Research, Elsevier, vol. 214(3), pages 536-545, November.
    11. Asma Troudi & Sid-Ali Addouche & Sofiene Dellagi & Abderrahman El Mhamedi, 2018. "Sizing of the Drone Delivery Fleet Considering Energy Autonomy," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    12. Z Wang & W Liang & X Hu, 2014. "A metaheuristic based on a pool of routes for the vehicle routing problem with multiple trips and time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(1), pages 37-48, January.
    13. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    14. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    2. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    3. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    5. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    6. Wenjiao Zai & Junjie Wang & Guohui Li, 2023. "A Drone Scheduling Method for Emergency Power Material Transportation Based on Deep Reinforcement Learning Optimized PSO Algorithm," Sustainability, MDPI, vol. 15(17), pages 1-29, August.
    7. Li, Hongqi & Wang, Feilong & Zhan, Zhuopeng, 2024. "Drone routing problem with swarm synchronization," European Journal of Operational Research, Elsevier, vol. 314(2), pages 477-495.
    8. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    10. Kunpeng Wu & Shaofeng Lu & Haoqin Chen & Minling Feng & Zenghao Lu, 2024. "An Energy-Efficient Logistic Drone Routing Method Considering Dynamic Drone Speed and Payload," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    11. Zandieh, Fatemeh & Ghannadpour, Seyed Farid & Mazdeh, Mohammad Mahdavi, 2024. "New integrated routing and surveillance model with drones and charging station considerations," European Journal of Operational Research, Elsevier, vol. 313(2), pages 527-547.
    12. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    13. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    14. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    15. Sun, Xuting & Fang, Minghao & Guo, Shu & Hu, Yue, 2024. "UAV-rider coordinated dispatching for the on-demand delivery service provider," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    16. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    17. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development," Post-Print hal-04381308, HAL.
    18. Johannes Schmidt & Armin Fügenschuh, 2023. "A two-time-level model for mission and flight planning of an inhomogeneous fleet of unmanned aerial vehicles," Computational Optimization and Applications, Springer, vol. 85(1), pages 293-335, May.
    19. Maria Elena Bruni & Sara Khodaparasti, 2022. "A Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    20. Yafei Li & Minghuan Liu, 2022. "Path Planning of Electric VTOL UAV Considering Minimum Energy Consumption in Urban Areas," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    21. Lin, Meiyan & Lin, Shaodan & Ma, Lijun & Zhang, Lianmin, 2022. "The value of the Physical Internet on the meals-on-wheels delivery system," International Journal of Production Economics, Elsevier, vol. 248(C).
    22. Konstantinos Athanasopoulos & Ioannis Chatziioannou & Argyro-Maria Boutsi & Georgios Tsingenopoulos & Sofia Soile & Regina Chliverou & Zoe Petrakou & Efstathios Papanikolaou & Christos Karolemeas & Ef, 2024. "Integrating Cargo Bikes and Drones into Last-Mile Deliveries: Insights from Pilot Deliveries in Five Greek Cities," Sustainability, MDPI, vol. 16(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    2. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    4. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    5. Huang, Nan & Li, Jiliu & Zhu, Wenbin & Qin, Hu, 2021. "The multi-trip vehicle routing problem with time windows and unloading queue at depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    7. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    8. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    9. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    10. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    11. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    13. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    14. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    15. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    16. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    17. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    18. J. Molina & A. D. López-Sánchez & A. G. Hernández-Díaz & I. Martínez-Salazar, 2018. "A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems," Journal of Heuristics, Springer, vol. 24(2), pages 111-133, April.
    19. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:139:y:2020:i:c:p:364-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.