IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i2p469-485.html
   My bibliography  Save this article

A competitive heuristic algorithm for vehicle routing problems with drones

Author

Listed:
  • Ren, Xuan
  • Froger, Aurélien
  • Jabali, Ola
  • Liang, Gongqian

Abstract

We propose a heuristic algorithm capable of handling multiple variants of the vehicle routing problem with drones (VRPD). Assuming that the drone may be launched from a node and recovered at another, these variants are characterized by three axes, (1) minimizing the transportation cost or minimizing the makespan, (2) the drone is either allowed or not allowed to land while awaiting recovery, and (3) single or multiple trucks each equipped with a drone. In our algorithm, we represent a VRPD solution as a set of customer sequences and evaluate it via local search procedures solving for each sequence a problem that we refer to as the fixed route drone dispatch problem (FRDDP). Given a sequence of customers to be served by a single truck and its drone, the FRDDP selects a subset of customers to be served by the drone and determines drone launch and recovery nodes, while ensuring that each such customer is positioned between two nodes in the initial sequence. We introduce a heuristic dynamic program (HDP) to solve the FRDDP with reduced computational complexity compared to an exact solution algorithm for the problem. We reinforce our algorithm by developing filtering strategies based on the HDP. We benchmark the performance of our algorithm on nine benchmark sets pertaining to four VRPD variants resulting in 932 instances. Our algorithm computes 651 of 680 optimal solutions and identifies 189 new best-known solutions.

Suggested Citation

  • Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:469-485
    DOI: 10.1016/j.ejor.2024.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    2. Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
    3. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Lu Zhen & Jiajing Gao & Zheyi Tan & Shuaian Wang & Roberto Baldacci, 2023. "Branch-price-and-cut for trucks and drones cooperative delivery," IISE Transactions, Taylor & Francis Journals, vol. 55(3), pages 271-287, March.
    5. Yang, Weibo & Ke, Liangjun & Wang, David Z.W. & Lam, Jasmine Siu Lee, 2021. "A branch-price-and-cut algorithm for the vehicle routing problem with release and due dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    7. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    8. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    9. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    10. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    11. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    12. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    13. Amro M. El-Adle & Ahmed Ghoniem & Mohamed Haouari, 2021. "Parcel delivery by vehicle and drone," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(2), pages 398-416, February.
    14. Roberto Roberti & Mario Ruthmair, 2021. "Exact Methods for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 55(2), pages 315-335, March.
    15. Macrina, Giusy & Laporte, Gilbert & Guerriero, Francesca & Di Puglia Pugliese, Luigi, 2019. "An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows," European Journal of Operational Research, Elsevier, vol. 276(3), pages 971-982.
    16. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    17. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    18. Rave, Alexander & Fontaine, Pirmin & Kuhn, Heinrich, 2023. "Drone location and vehicle fleet planning with trucks and aerial drones," European Journal of Operational Research, Elsevier, vol. 308(1), pages 113-130.
    19. Chen, Cheng & Demir, Emrah & Huang, Yuan, 2021. "An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1164-1180.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    2. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    3. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    4. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    5. Zhu, Waiming & Hu, Xiaoxuan & Pei, Jun & Pardalos, Panos M., 2024. "Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    6. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    7. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    8. Deng, Menghua & Li, Yuanbo & Ding, Jianpeng & Zhou, Yanlin & Zhang, Lianming, 2024. "Stochastic and robust truck-and-drone routing problems with deadlines: A Benders decomposition approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    9. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    10. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    11. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    12. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Mahmoudinazlou, Sasan & Kwon, Changhyun, 2024. "A hybrid genetic algorithm with type-aware chromosomes for Traveling Salesman Problems with Drone," European Journal of Operational Research, Elsevier, vol. 318(3), pages 719-739.
    14. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Jeanette Schmidt & Christian Tilk & Stefan Irnich, 2023. "Exact Solution of the Vehicle Routing Problem With Drones," Working Papers 2311, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    17. Meng, Shanshan & Chen, Yanru & Li, Dong, 2024. "The multi-visit drone-assisted pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 314(2), pages 685-702.
    18. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Yi Li & Min Liu & Dandan Jiang, 2022. "Application of Unmanned Aerial Vehicles in Logistics: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    20. Zhang, Juan & Campbell, James F. & Sweeney, Donald C., 2024. "A continuous approximation approach to integrated truck and drone delivery systems," Omega, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:469-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.