IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v269y2018i2p602-620.html
   My bibliography  Save this article

Dealing with residual energy when transmitting data in energy-constrained capacitated networks

Author

Listed:
  • Calvete, Herminia I.
  • del-Pozo, Lourdes
  • Iranzo, José A.

Abstract

This paper addresses several problems relating to the energy available after the transmission of a given amount of data in a capacitated network. The arcs have an associated parameter representing the energy consumed during the transmission along the arc and the nodes have limited power to transmit data. In the first part of the paper, we consider the problem of designing a path which maximizes the minimum of the residual energy remaining at the nodes. After formulating the problem and proving the main theoretical results, a polynomial time algorithm is proposed based on computing maxmin paths in a sequence of non-capacitated networks. In the second part of the paper, the problem of obtaining a quickest path in this context is analyzed. First, the bi-objective variant of this problem is considered in which we aim to minimize the transmission time and to maximize the minimum residual energy. An exact polynomial time algorithm is proposed to find a minimal complete set of efficient solutions which amounts to solving shortest path problems. Second, the problem of computing an energy-constrained quickest path which guarantees at least a given residual energy at the nodes is reformulated as a variant of the energy-constrained quickest path problem. The algorithms are tested on a set of benchmark problems providing the optimal solution or the Pareto front within reasonable computing times.

Suggested Citation

  • Calvete, Herminia I. & del-Pozo, Lourdes & Iranzo, José A., 2018. "Dealing with residual energy when transmitting data in energy-constrained capacitated networks," European Journal of Operational Research, Elsevier, vol. 269(2), pages 602-620.
  • Handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:602-620
    DOI: 10.1016/j.ejor.2018.02.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718301747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.02.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Hart Moore, 1976. "On the Fastest Route for Convoy-Type Traffic in Flowrate-Constrained Networks," Transportation Science, INFORMS, vol. 10(2), pages 113-124, May.
    2. D. Klingman & A. Napier & J. Stutz, 1974. "NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems," Management Science, INFORMS, vol. 20(5), pages 814-821, January.
    3. Marta Pascoal & M. Captivo & João Clímaco, 2006. "A comprehensive survey on the quickest path problem," Annals of Operations Research, Springer, vol. 147(1), pages 5-21, October.
    4. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    5. Maurice Pollack, 1960. "Letter to the Editor---The Maximum Capacity Through a Network," Operations Research, INFORMS, vol. 8(5), pages 733-736, October.
    6. Martins, Ernesto Queiros Vieira, 1984. "On a special class of bicriterion path problems," European Journal of Operational Research, Elsevier, vol. 17(1), pages 85-94, July.
    7. Climaco, Joao C.N. & Pascoal, Marta M.B. & Craveirinha, Jose M.F. & Captivo, M. Eugenia V., 2007. "Internet packet routing: Application of a K-quickest path algorithm," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1045-1054, September.
    8. Keskin, Muhammed Emre, 2017. "A column generation heuristic for optimal wireless sensor network design with mobile sinks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 291-304.
    9. Herminia Calvete & Lourdes del-Pozo & José Iranzo, 2012. "Algorithms for the quickest path problem and the reliable quickest path problem," Computational Management Science, Springer, vol. 9(2), pages 255-272, May.
    10. Lersteau, Charly & Rossi, André & Sevaux, Marc, 2018. "Minimum energy target tracking with coverage guarantee in wireless sensor networks," European Journal of Operational Research, Elsevier, vol. 265(3), pages 882-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashutosh Sharma & Rajiv Kumar & Manar Wasif Abu Talib & Saurabh Srivastava & Razi Iqbal, 2019. "Network modelling and computation of quickest path for service-level agreements using bi-objective optimization," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedeño-Noda, Antonio & González-Barrera, Jonathan D., 2014. "Fast and fine quickest path algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 596-606.
    2. Mehdi Ghiyasvand & Azam Ramezanipour, 2018. "Solving the MCQP, MLT, and MMLT problems and computing weakly and strongly stable quickest paths," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(2), pages 217-230, June.
    3. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    4. Ashutosh Sharma & Rajiv Kumar & Manar Wasif Abu Talib & Saurabh Srivastava & Razi Iqbal, 2019. "Network modelling and computation of quickest path for service-level agreements using bi-objective optimization," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
    5. Herminia Calvete & Lourdes del-Pozo & José Iranzo, 2012. "Algorithms for the quickest path problem and the reliable quickest path problem," Computational Management Science, Springer, vol. 9(2), pages 255-272, May.
    6. Tayyebi, Javad & Mitra, Ankan & Sefair, Jorge A., 2023. "The continuous maximum capacity path interdiction problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 38-52.
    7. Forghani-elahabad, Majid & Mahdavi-Amiri, Nezam, 2015. "An efficient algorithm for the multi-state two separate minimal paths reliability problem with budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 472-481.
    8. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    9. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    10. Gerald G. Brown & W. Matthew Carlyle, 2020. "Solving the Nearly Symmetric All-Pairs Shortest-Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 279-288, April.
    11. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    12. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    13. Festa, P. & Guerriero, F. & Laganà, D. & Musmanno, R., 2013. "Solving the shortest path tour problem," European Journal of Operational Research, Elsevier, vol. 230(3), pages 464-474.
    14. Yves Pochet & Mathieu Van Vyve, 2004. "A General Heuristic for Production Planning Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 316-327, August.
    15. R. Fourer & H. Gassmann & J. Ma & R. Martin, 2009. "An XML-based schema for stochastic programs," Annals of Operations Research, Springer, vol. 166(1), pages 313-337, February.
    16. Maya Duque, Pablo A. & Coene, Sofie & Goos, Peter & Sörensen, Kenneth & Spieksma, Frits, 2013. "The accessibility arc upgrading problem," European Journal of Operational Research, Elsevier, vol. 224(3), pages 458-465.
    17. Thi-Phuong Nguyen, 2022. "Evaluation of network reliability for stochastic-flow air transportation network considering discounted fares from airlines," Annals of Operations Research, Springer, vol. 311(1), pages 335-355, April.
    18. ÇalIskan, Cenk, 2011. "A specialized network simplex algorithm for the constrained maximum flow problem," European Journal of Operational Research, Elsevier, vol. 210(2), pages 137-147, April.
    19. Mongeau, Marcel & Sartenaer, Annick, 1995. "Automatic decrease of the penalty parameter in exact penalty function methods," European Journal of Operational Research, Elsevier, vol. 83(3), pages 686-699, June.
    20. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:602-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.