IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v36y2004i5p897-919.html
   My bibliography  Save this article

A Dual Neural Network for Solving Entropy-Maximising Models

Author

Listed:
  • Yee Leung

    (Department of Geography and Resource Management, Center for Environmental Policy and Resource Management, and Joint Laboratory for Geoinformation Science, The Chinese University of Hong Kong, Hong Kong)

  • Xing-Bao Gao

    (Department of Mathematics, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China)

  • Kai-Zhou Chen

    (Microelectronic Institute, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China)

Abstract

The entropy-maximixing model has been applied with varying degrees of success in the analysis and planning of origin – destination types of spatial interaction. Although theoretical underpinnings and solution methods have been developed over the years, there are still outstanding problems that need to be thoroughly investigated. From the practical point of view, solving this model directly and in real time has high theoretical and pragmatic value. In this paper we propose a neural network for solving the dual problem of this model in real time. The size of the proposed network is very small and its structure is very simple, so it can be implemented in hardware. From the theoretical perspective, we solve the seldom investigated issue of convergence to the optimal solution of the entropy-maximising model. We strictly prove that the proposed dual neural network is Lyapunov stable and that each of its trajectories can converge asymptotically to an exact solution of the dual problem. The validity and transient behaviour of the proposed neural network are demonstrated by numerical examples. It is also demonstrated that the proposed network approach renders for the first time a tight integration of an entropy-maximising model and a neural network, and offers a general representation and solution to a large variety of entropy-maximising models.

Suggested Citation

  • Yee Leung & Xing-Bao Gao & Kai-Zhou Chen, 2004. "A Dual Neural Network for Solving Entropy-Maximising Models," Environment and Planning A, , vol. 36(5), pages 897-919, May.
  • Handle: RePEc:sae:envira:v:36:y:2004:i:5:p:897-919
    DOI: 10.1068/a3673a
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a3673a
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a3673a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manfred M. Fischer & Katerina Hlavácková-Schindler & Martin Reismann, 1999. "articles: A global search procedure for parameter estimation in neural spatial interaction modelling," Papers in Regional Science, Springer;Regional Science Association International, vol. 78(2), pages 119-134.
    2. Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
    3. Manfred M. Fischer & Yee Leung, 1998. "A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction data," ERSA conference papers ersa98p478, European Regional Science Association.
    4. Kuwahara, Masao & Sullivan, Edward C., 1987. "Estimating origin-destination matrices from roadside survey data," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 233-248, June.
    5. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
    2. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    3. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    4. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    5. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    6. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    7. Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
    8. Z. Wu & W. Lam, 2006. "Transit passenger origin-destination estimation in congested transit networks with elastic line frequencies," Annals of Operations Research, Springer, vol. 144(1), pages 363-378, April.
    9. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    10. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    11. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    12. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    13. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    14. Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
    15. S. Travis Waller & Sai Chand & Aleksa Zlojutro & Divya Nair & Chence Niu & Jason Wang & Xiang Zhang & Vinayak V. Dixit, 2021. "Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    16. Fischer, Manfred M., 2006. "Neural Networks. A General Framework for Non-Linear Function Approximation," MPRA Paper 77776, University Library of Munich, Germany.
    17. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    18. Manfred M. Fischer, 2009. "Principles of Neural Spatial Interaction Modeling," Advances in Spatial Science, in: Michael Sonis & Geoffrey J. D. Hewings (ed.), Tool Kits in Regional Science, chapter 8, pages 199-214, Springer.
    19. Hsun-Jung Cho & Yow-Jen Jou & Chien-Lun Lan, 2009. "Time Dependent Origin-destination Estimation from Traffic Count without Prior Information," Networks and Spatial Economics, Springer, vol. 9(2), pages 145-170, June.
    20. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:36:y:2004:i:5:p:897-919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.