Fine-grained OD estimation with automated zoning and sparsity regularisation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.trb.2015.07.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luis Martínez & José Viegas & Elisabete Silva, 2009. "A traffic analysis zone definition: a new methodology and algorithm," Transportation, Springer, vol. 36(5), pages 581-599, September.
- Cascetta, Ennio & Nguyen, Sang, 1988. "A unified framework for estimating or updating origin/destination matrices from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 437-455, December.
- Bierlaire, Michel, 2002. "The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 837-850, November.
- Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
- Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
- Hazelton, Martin L., 2001. "Inference for origin-destination matrices: estimation, prediction and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 667-676, August.
- Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
- Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
- Bell, Michael G. H., 1991. "The estimation of origin-destination matrices by constrained generalised least squares," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 13-22, February.
- Spiess, Heinz, 1987. "A maximum likelihood model for estimating origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 21(5), pages 395-412, October.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Lamond, B. & Stewart, N. F., 1981. "Bregman's balancing method," Transportation Research Part B: Methodological, Elsevier, vol. 15(4), pages 239-248, August.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Sherali, Hanif D. & Sivanandan, R. & Hobeika, Antoine G., 1994. "A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes," Transportation Research Part B: Methodological, Elsevier, vol. 28(3), pages 213-233, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
- Yang, Binyu & Tian, Yuan & Wang, Jian & Hu, Xiaowei & An, Shi, 2022. "How to improve urban transportation planning in big data era? A practice in the study of traffic analysis zone delineation," Transport Policy, Elsevier, vol. 127(C), pages 1-14.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
- Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
- Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
- Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
- Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
- Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
- Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
- Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
- Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
- Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
- S. Travis Waller & Sai Chand & Aleksa Zlojutro & Divya Nair & Chence Niu & Jason Wang & Xiang Zhang & Vinayak V. Dixit, 2021. "Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
- Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
- Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
- Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
- T. Abrahamsson, 1998. "Estimation of Origin-Destination Matrices Using Traffic Counts- A Literature Survey," Working Papers ir98021, International Institute for Applied Systems Analysis.
- Bielli, Maurizio & Reverberi, Pierfrancesco, 1996. "New operations research and artificial intelligence approaches to traffic engineering problems," European Journal of Operational Research, Elsevier, vol. 92(3), pages 550-572, August.
- Bierlaire, M. & Toint, Ph. L., 1995. "Meuse: An origin-destination matrix estimator that exploits structure," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 47-60, February.
- Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
- Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
- Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
More about this item
Keywords
OD estimation; Traffic analysis zones; Sparsity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:80:y:2015:i:c:p:150-172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.