Author
Listed:
- Kuwahara, Masao
- Sullivan, Edward C.
Abstract
The purpose of this study is to develop a valid and efficient method for estimating origin-destination tables from roadside survey data. Roadside surveys, whether conducted by interviews or postcard mailback methods, typically have in common the sampling of trip origin and destination information at survey stations. These survey stations are generally located where roads cross "screenlines," which are imaginary barriers drawn to intercept the trip types of interest.Such surveys also include counts of traffic volumes, by which the partial origin-destination (O-D) tables obtained at the different stations can be expanded and combined to obtain the complete O-D table which represents travel throughout the entire study area. The procedure used to expand the sample O-D information from the survey stations must recognize and deal appropriately with a number of problems: 1. (i) The "double counting" problem: Long-distance trips may pass through more than one survey station location; thus certain trips have the possibility of being sampled and expanded more than once, leading to a potentially serious overrepresentation of long-distance trips in the complete expanded trip table. 2. (ii) The "leaky screenline" problem: Some route choices, particularly those using very lightly traveled roads, may miss the survey stations entirely, leading to an underestimation of certain O-D patterns, or to distorted estimates if such sites are arbitrarily coupled with actual nearby station locations. 3. (iii) The efficient use of the data: There is a need to adjust expansion factors to compensate for double counting and leaky screenlines. How can this be accomplished such that all of the data obtained at the stations are used without loss of information? 4. (iv) The consequences of uncertainty and unknown travel behavior: Since the O-D data and other sampled variables are subject to random error, and since in general the probability of encountering a long-distance trip at some survey stations is affected by traveler route-choice behavior, which is not understood, the sample expansion procedure must rely on the use of erroneous input data and questionable assumptions. The preferred procedure must minimize, rather than amplify, the effects of such input errors. Here, five alternate methods for expanding roadside survey data in an unbiased manner are proposed and evaluated. In all cases, it is assumed that traveler route choice generally follows the pattern described by Dial's multipath assignment method. All methods are applied to a simple hypothetical network in order to examine their efficiency and error amplification properties. The evaluation of the five methods reveals that their performance properties vary considerably and that no single method is best in all circumstances. A microcomputer program has been provided as a tool to facilitate comparison among methods and to select the most appropriate expansion method for a particular application.
Suggested Citation
Kuwahara, Masao & Sullivan, Edward C., 1987.
"Estimating origin-destination matrices from roadside survey data,"
Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 233-248, June.
Handle:
RePEc:eee:transb:v:21:y:1987:i:3:p:233-248
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Chao Sun & Yulin Chang & Yuji Shi & Lin Cheng & Jie Ma, 2019.
"Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints,"
Networks and Spatial Economics, Springer, vol. 19(4), pages 1123-1142, December.
- Yee Leung & Xing-Bao Gao & Kai-Zhou Chen, 2004.
"A Dual Neural Network for Solving Entropy-Maximising Models,"
Environment and Planning A, , vol. 36(5), pages 897-919, May.
- Andrés Leiva-Araos & Héctor Allende-Cid, 2021.
"A Hierarchical Fuzzy-Based Correction Algorithm for the Neighboring Network Hit Problem,"
Mathematics, MDPI, vol. 9(4), pages 1-36, February.
- Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022.
"Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts,"
Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
- Pérez-Martínez, P.J. & Miranda, R.M. & Andrade, M.F., 2020.
"Freight road transport analysis in the metro São Paulo: Logistical activities and CO2 emissions,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 16-33.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:21:y:1987:i:3:p:233-248. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.