IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v35y2001i2p107-123.html
   My bibliography  Save this article

Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium

Author

Listed:
  • Hai Yang

    (Department of Civil Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China)

  • Qiang Meng

    (Department of Civil Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China)

  • Michael G. H. Bell

    (Department of Civil Engineering, The University of Newcastle upon Tyne, NE1 7RU, United Kingdom)

Abstract

This article proposes an optimization model for simultaneous estimation of an origin-destination (O-D) matrix and a travel-cost coefficient for congested networks in a logit-based stochastic user equilibrium (SUE). The model is formulated in the form of a standard differentiable, nonlinear optimization problem with analytical stochastic user equilibrium constraints. Explicit expressions of the derivatives of the stochastic user equilibrium constraints with respect to origin-destination demand, link flow, and travel-cost coefficient are derived and computed efficiently through a stochastic network-loading approach. A successive quadratic-programming algorithm using the derivative information is applied to solve the simultaneous estimation model. This algorithm converges to a Karusch-Kuhn-Tucker point of the problem under certain conditions. The proposed model and algorithm are illustrated with a numerical example.

Suggested Citation

  • Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
  • Handle: RePEc:inm:ortrsc:v:35:y:2001:i:2:p:107-123
    DOI: 10.1287/trsc.35.2.107.10133
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.35.2.107.10133
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.35.2.107.10133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Fisk, C. S. & Boyce, D. E., 1983. "A note on trip matrix estimation from link traffic count data," Transportation Research Part B: Methodological, Elsevier, vol. 17(3), pages 245-250, June.
    3. Warren B. Powell & Yosef Sheffi, 1982. "The Convergence of Equilibrium Algorithms with Predetermined Step Sizes," Transportation Science, INFORMS, vol. 16(1), pages 45-55, February.
    4. Yang, Hai & Iida, Yasunori & Sasaki, Tsuna, 1994. "The equilibrium-based origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 23-33, February.
    5. LeBlanc, Larry J. & Farhangian, Keyvan, 1982. "Selection of a trip table which reproduces observed link flows," Transportation Research Part B: Methodological, Elsevier, vol. 16(2), pages 83-88, April.
    6. Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
    7. Brenninger-Göthe, Maud & Jörnsten, Kurt O. & Lundgren, Jan T., 1989. "Estimation of origin-destination matrices from traffic counts using multiobjective programming formulations," Transportation Research Part B: Methodological, Elsevier, vol. 23(4), pages 257-269, August.
    8. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    9. Cascetta, Ennio & Nguyen, Sang, 1988. "A unified framework for estimating or updating origin/destination matrices from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 437-455, December.
    10. Davis, Gary A., 1994. "Exact local solution of the continuous network design problem via stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 61-75, February.
    11. Spiess, Heinz, 1987. "A maximum likelihood model for estimating origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 21(5), pages 395-412, October.
    12. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    13. Sue McNeil & Chris Hendrickson, 1985. "A Regression Formulation of the Matrix Estimation Problem," Transportation Science, INFORMS, vol. 19(3), pages 278-292, August.
    14. Bierlaire, M. & Toint, Ph. L., 1995. "Meuse: An origin-destination matrix estimator that exploits structure," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 47-60, February.
    15. Fisk, C. S., 1988. "On combining maximum entropy trip matrix estimation with user optimal assignment," Transportation Research Part B: Methodological, Elsevier, vol. 22(1), pages 69-73, February.
    16. Fisk, C. S., 1989. "Trip matrix estimation from link traffic counts: The congested network case," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 331-336, October.
    17. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    18. Barbour, Refat & Fricker, Jon D., 1994. "Estimating an origin-destination table using a method based on shortest augmenting paths," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 77-89, April.
    19. Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
    20. Sherali, Hanif D. & Sivanandan, R. & Hobeika, Antoine G., 1994. "A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes," Transportation Research Part B: Methodological, Elsevier, vol. 28(3), pages 213-233, June.
    21. Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    2. Guarda, Pablo & Qian, Sean, 2024. "Statistical inference of travelers’ route choice preferences with system-level data," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    3. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    4. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    5. Byung Chung & Hsun-Jung Cho & Terry Friesz & Henh Huang & Tao Yao, 2014. "Sensitivity Analysis of User Equilibrium Flows Revisited," Networks and Spatial Economics, Springer, vol. 14(2), pages 183-207, June.
    6. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    7. García-Ródenas, Ricardo & Marín, Ángel, 2009. "Simultaneous estimation of the origin-destination matrices and the parameters of a nested logit model in a combined network equilibrium model," European Journal of Operational Research, Elsevier, vol. 197(1), pages 320-331, August.
    8. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    9. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    10. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    11. Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
    12. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    13. Caggiani, Leonardo & Camporeale, Rosalia & Ottomanelli, Michele, 2017. "Facing equity in transportation Network Design Problem: A flexible constraints based model," Transport Policy, Elsevier, vol. 55(C), pages 9-17.
    14. Zao Li & Yanyan Gao & Li Yu & Charles L. Choguill & Weiyi Cui, 2022. "Analysis of the Elderly’s Preferences for Choosing Medical Service Facilities from the Perspective of Accessibility: A Case Study of Tertiary General Hospitals in Hefei, China," IJERPH, MDPI, vol. 19(15), pages 1-23, August.
    15. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    16. Z. Wu & W. Lam, 2006. "Transit passenger origin-destination estimation in congested transit networks with elastic line frequencies," Annals of Operations Research, Springer, vol. 144(1), pages 363-378, April.
    17. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    18. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    19. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    2. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    3. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    4. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    5. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    6. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    7. T. Abrahamsson, 1998. "Estimation of Origin-Destination Matrices Using Traffic Counts- A Literature Survey," Working Papers ir98021, International Institute for Applied Systems Analysis.
    8. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    9. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    10. Maryam Abareshi & Mehdi Zaferanieh & Bagher Keramati, 2017. "Path Flow Estimator in an Entropy Model Using a Nonlinear L-Shaped Algorithm," Networks and Spatial Economics, Springer, vol. 17(1), pages 293-315, March.
    11. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    12. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1999. "Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 369-385, June.
    13. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    14. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    15. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    16. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    17. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    18. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
    19. Walpen, Jorgelina & Mancinelli, Elina M. & Lotito, Pablo A., 2015. "A heuristic for the OD matrix adjustment problem in a congested transport network," European Journal of Operational Research, Elsevier, vol. 242(3), pages 807-819.
    20. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:35:y:2001:i:2:p:107-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.