IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v186y2024ics0191261524001437.html
   My bibliography  Save this article

Using traffic assignment models to assist Bayesian inference for origin–destination matrices

Author

Listed:
  • Hazelton, Martin L.
  • Najim, Lara

Abstract

Estimation of traffic volumes between each origin and destination of travel is a standard practice in transport engineering. Commonly the available data constitute traffic counts at various locations on the network, supplemented by a survey-based prior estimate of mean origin–destination traffic volumes. Statistical inference in this type of network tomography problem is known to be challenging. Moreover, the difficulties are increased in practice by the presence of a large number of nuisance parameters corresponding to route choice probabilities, for which we have no direct prior information. Working in a Bayesian framework, we determine these parameters using a stochastic user equilibrium route choice model. We develop an MCMC algorithm for model fitting. This requires repeated computation of stochastic user equilibrium flows, and so we develop a computationally cheap emulator. Our methods are tested on numerical examples based on a section of the road network in the English city of Leicester.

Suggested Citation

  • Hazelton, Martin L. & Najim, Lara, 2024. "Using traffic assignment models to assist Bayesian inference for origin–destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001437
    DOI: 10.1016/j.trb.2024.103019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantinos Perrakis & Dimitris Karlis & Mario Cools & Davy Janssens, 2015. "Bayesian inference for transportation origin–destination matrices: the Poisson–inverse Gaussian and other Poisson mixtures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 271-296, January.
    2. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    3. Carlos F. Daganzo, 1983. "Stochastic Network Equilibrium with Multiple Vehicle Types and Asymmetric, Indefinite Link Cost Jacobians," Transportation Science, INFORMS, vol. 17(3), pages 282-300, August.
    4. Hazelton, Martin L., 2022. "The emergence of stochastic user equilibria in day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 102-112.
    5. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
    6. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    7. Cremer, M. & Keller, H., 1987. "A new class of dynamic methods for the identification of origin-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 117-132, April.
    8. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    9. Nancy L. Nihan & Gary A. Davis, 1989. "Application of Prediction-Error Minimization and Maximum Likelihood to Estimate Intersection O-D Matrices from Traffic Counts," Transportation Science, INFORMS, vol. 23(2), pages 77-90, May.
    10. Duncan, Lawrence Christopher & Watling, David Paul & Connors, Richard Dominic & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2020. "Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 1-40.
    11. Gary A. Davis & Nancy L. Nihan, 1993. "Large Population Approximations of a General Stochastic Traffic Assignment Model," Operations Research, INFORMS, vol. 41(1), pages 169-178, February.
    12. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    13. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1996. "Estimation of an origin-destination matrix with random link choice proportions: A statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 309-324, August.
    14. Giulio Erberto Cantarella, 1997. "A General Fixed-Point Approach to Multimode Multi-User Equilibrium Assignment with Elastic Demand," Transportation Science, INFORMS, vol. 31(2), pages 107-128, May.
    15. Martin L. Hazelton, 2001. "Estimation of origin–destination trip rates in Leicester," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 423-433.
    16. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    17. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    18. Pas, Eric I. & Principio, Shari L., 1997. "Braess' paradox: Some new insights," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 265-276, June.
    19. Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
    20. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    21. Ennio Cascetta & Maria Nadia Postorino, 2001. "Fixed Point Approaches to the Estimation of O/D Matrices Using Traffic Counts on Congested Networks," Transportation Science, INFORMS, vol. 35(2), pages 134-147, May.
    22. John Geweke, 2007. "Bayesian Model Comparison and Validation," American Economic Review, American Economic Association, vol. 97(2), pages 60-64, May.
    23. Edoardo M. Airoldi & Alexander W. Blocker, 2013. "Estimating Latent Processes on a Network From Indirect Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 149-164, March.
    24. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    2. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    3. Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
    4. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    5. Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
    6. Guo, Jianhua & Liu, Yu & Li, Xiugang & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "Enhanced least square based dynamic OD matrix estimation using Radio Frequency Identification data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 27-40.
    7. Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
    8. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    9. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    10. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    11. Hazelton, Martin L., 2022. "The emergence of stochastic user equilibria in day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 102-112.
    12. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    13. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    14. Hazelton, Martin L., 2010. "Bayesian inference for network-based models with a linear inverse structure," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 674-685, June.
    15. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    16. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    17. Massimo Gangi & Giulio E. Cantarella & Antonino Vitetta, 2019. "Solving stochastic frequency-based assignment to transit networks with pre-trip/en-route path choice," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 661-681, December.
    18. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    19. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    20. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.